Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure

We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-02, Vol.11 (2), p.855-863
Hauptverfasser: Cheng, Xuerui, Li, Yuanyuan, Shang, Jimin, Hu, Chuansheng, Ren, Yufen, Liu, Miao, Qi, Zeming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 2
container_start_page 855
container_title Nano research
container_volume 11
creator Cheng, Xuerui
Li, Yuanyuan
Shang, Jimin
Hu, Chuansheng
Ren, Yufen
Liu, Miao
Qi, Zeming
description We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.
doi_str_mv 10.1007/s12274-017-1696-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992794682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733681</cqvip_id><sourcerecordid>1992794682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhSdGE2v1AdwRXY9ygcKwNI1_SY0L68oFAcp0prYwhalJ316aVuPKu-EuznfO5RTFJeAbwFjcJiBEsBKDKIFLXm6PigFIWZU4z_HPDoSdFmcpLTDmBFg1KD6mTWs_vUupnLnO-ZnzPeoanRzqo_ap7dvgkfYzFLq-tXqJjGv0VxsiCjV6CW8E1e1yldAmoxE17bxBXcx2m-jOi5NaL5O7OLzD4v3hfjp-Kievj8_ju0lpKaN9KRmtBcysoZJKYbgDWlUjg7kgIxCGARggFrS23EkuGdSuBlyBNcRYIygdFtd73y6G9calXi3CJvocqfK3iZCMVySrYK-yMaQUXa262K503CrAateh2neocodq16HaZobsmZS1fu7iH-d_oKtDUBP8fJ253yQuWL6XV0C_Adu5gF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992794682</pqid></control><display><type>article</type><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><source>SpringerLink Journals</source><creator>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</creator><creatorcontrib>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</creatorcontrib><description>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1696-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Blue shift ; Chemistry and Materials Science ; Condensed Matter Physics ; Diamond films ; Diamonds ; Diffraction ; External pressure ; Film thickness ; High pressure ; Hydrostatic pressure ; Interlayers ; Luminescence ; Materials Science ; Molybdenum disulfide ; Monolayers ; MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力 ; Nanotechnology ; Optical properties ; Phase transitions ; Photoluminescence ; Photons ; Pressure ; Research Article ; Silicones ; Substrates ; Transition pressure ; Vibration mode ; X-rays</subject><ispartof>Nano research, 2018-02, Vol.11 (2), p.855-863</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</citedby><cites>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1696-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1696-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Xuerui</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shang, Jimin</creatorcontrib><creatorcontrib>Hu, Chuansheng</creatorcontrib><creatorcontrib>Ren, Yufen</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blue shift</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Diffraction</subject><subject>External pressure</subject><subject>Film thickness</subject><subject>High pressure</subject><subject>Hydrostatic pressure</subject><subject>Interlayers</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Pressure</subject><subject>Research Article</subject><subject>Silicones</subject><subject>Substrates</subject><subject>Transition pressure</subject><subject>Vibration mode</subject><subject>X-rays</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OAyEUhSdGE2v1AdwRXY9ygcKwNI1_SY0L68oFAcp0prYwhalJ316aVuPKu-EuznfO5RTFJeAbwFjcJiBEsBKDKIFLXm6PigFIWZU4z_HPDoSdFmcpLTDmBFg1KD6mTWs_vUupnLnO-ZnzPeoanRzqo_ap7dvgkfYzFLq-tXqJjGv0VxsiCjV6CW8E1e1yldAmoxE17bxBXcx2m-jOi5NaL5O7OLzD4v3hfjp-Kievj8_ju0lpKaN9KRmtBcysoZJKYbgDWlUjg7kgIxCGARggFrS23EkuGdSuBlyBNcRYIygdFtd73y6G9calXi3CJvocqfK3iZCMVySrYK-yMaQUXa262K503CrAateh2neocodq16HaZobsmZS1fu7iH-d_oKtDUBP8fJ253yQuWL6XV0C_Adu5gF4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Cheng, Xuerui</creator><creator>Li, Yuanyuan</creator><creator>Shang, Jimin</creator><creator>Hu, Chuansheng</creator><creator>Ren, Yufen</creator><creator>Liu, Miao</creator><creator>Qi, Zeming</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180201</creationdate><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><author>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blue shift</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Diffraction</topic><topic>External pressure</topic><topic>Film thickness</topic><topic>High pressure</topic><topic>Hydrostatic pressure</topic><topic>Interlayers</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Pressure</topic><topic>Research Article</topic><topic>Silicones</topic><topic>Substrates</topic><topic>Transition pressure</topic><topic>Vibration mode</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xuerui</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shang, Jimin</creatorcontrib><creatorcontrib>Hu, Chuansheng</creatorcontrib><creatorcontrib>Ren, Yufen</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xuerui</au><au>Li, Yuanyuan</au><au>Shang, Jimin</au><au>Hu, Chuansheng</au><au>Ren, Yufen</au><au>Liu, Miao</au><au>Qi, Zeming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1696-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2018-02, Vol.11 (2), p.855-863
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_1992794682
source SpringerLink Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Blue shift
Chemistry and Materials Science
Condensed Matter Physics
Diamond films
Diamonds
Diffraction
External pressure
Film thickness
High pressure
Hydrostatic pressure
Interlayers
Luminescence
Materials Science
Molybdenum disulfide
Monolayers
MoS2
阶段转变
高压力
厚度
电影
行为
光致发光
转变压力
Nanotechnology
Optical properties
Phase transitions
Photoluminescence
Photons
Pressure
Research Article
Silicones
Substrates
Transition pressure
Vibration mode
X-rays
title Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-dependent%20phase%20transition%20and%20optical%20behavior%20of%20MoS2%20films%20under%20high%20pressure&rft.jtitle=Nano%20research&rft.au=Cheng,%20Xuerui&rft.date=2018-02-01&rft.volume=11&rft.issue=2&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1696-y&rft_dat=%3Cproquest_cross%3E1992794682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992794682&rft_id=info:pmid/&rft_cqvip_id=674733681&rfr_iscdi=true