Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure
We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silico...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-02, Vol.11 (2), p.855-863 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | 2 |
container_start_page | 855 |
container_title | Nano research |
container_volume | 11 |
creator | Cheng, Xuerui Li, Yuanyuan Shang, Jimin Hu, Chuansheng Ren, Yufen Liu, Miao Qi, Zeming |
description | We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure. |
doi_str_mv | 10.1007/s12274-017-1696-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992794682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733681</cqvip_id><sourcerecordid>1992794682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhSdGE2v1AdwRXY9ygcKwNI1_SY0L68oFAcp0prYwhalJ316aVuPKu-EuznfO5RTFJeAbwFjcJiBEsBKDKIFLXm6PigFIWZU4z_HPDoSdFmcpLTDmBFg1KD6mTWs_vUupnLnO-ZnzPeoanRzqo_ap7dvgkfYzFLq-tXqJjGv0VxsiCjV6CW8E1e1yldAmoxE17bxBXcx2m-jOi5NaL5O7OLzD4v3hfjp-Kievj8_ju0lpKaN9KRmtBcysoZJKYbgDWlUjg7kgIxCGARggFrS23EkuGdSuBlyBNcRYIygdFtd73y6G9calXi3CJvocqfK3iZCMVySrYK-yMaQUXa262K503CrAateh2neocodq16HaZobsmZS1fu7iH-d_oKtDUBP8fJ253yQuWL6XV0C_Adu5gF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992794682</pqid></control><display><type>article</type><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><source>SpringerLink Journals</source><creator>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</creator><creatorcontrib>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</creatorcontrib><description>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1696-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Blue shift ; Chemistry and Materials Science ; Condensed Matter Physics ; Diamond films ; Diamonds ; Diffraction ; External pressure ; Film thickness ; High pressure ; Hydrostatic pressure ; Interlayers ; Luminescence ; Materials Science ; Molybdenum disulfide ; Monolayers ; MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力 ; Nanotechnology ; Optical properties ; Phase transitions ; Photoluminescence ; Photons ; Pressure ; Research Article ; Silicones ; Substrates ; Transition pressure ; Vibration mode ; X-rays</subject><ispartof>Nano research, 2018-02, Vol.11 (2), p.855-863</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</citedby><cites>FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1696-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1696-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Xuerui</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shang, Jimin</creatorcontrib><creatorcontrib>Hu, Chuansheng</creatorcontrib><creatorcontrib>Ren, Yufen</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blue shift</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Diffraction</subject><subject>External pressure</subject><subject>Film thickness</subject><subject>High pressure</subject><subject>Hydrostatic pressure</subject><subject>Interlayers</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Pressure</subject><subject>Research Article</subject><subject>Silicones</subject><subject>Substrates</subject><subject>Transition pressure</subject><subject>Vibration mode</subject><subject>X-rays</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OAyEUhSdGE2v1AdwRXY9ygcKwNI1_SY0L68oFAcp0prYwhalJ316aVuPKu-EuznfO5RTFJeAbwFjcJiBEsBKDKIFLXm6PigFIWZU4z_HPDoSdFmcpLTDmBFg1KD6mTWs_vUupnLnO-ZnzPeoanRzqo_ap7dvgkfYzFLq-tXqJjGv0VxsiCjV6CW8E1e1yldAmoxE17bxBXcx2m-jOi5NaL5O7OLzD4v3hfjp-Kievj8_ju0lpKaN9KRmtBcysoZJKYbgDWlUjg7kgIxCGARggFrS23EkuGdSuBlyBNcRYIygdFtd73y6G9calXi3CJvocqfK3iZCMVySrYK-yMaQUXa262K503CrAateh2neocodq16HaZobsmZS1fu7iH-d_oKtDUBP8fJ253yQuWL6XV0C_Adu5gF4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Cheng, Xuerui</creator><creator>Li, Yuanyuan</creator><creator>Shang, Jimin</creator><creator>Hu, Chuansheng</creator><creator>Ren, Yufen</creator><creator>Liu, Miao</creator><creator>Qi, Zeming</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180201</creationdate><title>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</title><author>Cheng, Xuerui ; Li, Yuanyuan ; Shang, Jimin ; Hu, Chuansheng ; Ren, Yufen ; Liu, Miao ; Qi, Zeming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-943f71dcb39397b6e13885b0672517b411b12c1aac6e96941fef1081cb2bcb733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blue shift</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Diffraction</topic><topic>External pressure</topic><topic>Film thickness</topic><topic>High pressure</topic><topic>Hydrostatic pressure</topic><topic>Interlayers</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>MoS2;阶段转变;高压力;厚度;电影;行为;光致发光;转变压力</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Pressure</topic><topic>Research Article</topic><topic>Silicones</topic><topic>Substrates</topic><topic>Transition pressure</topic><topic>Vibration mode</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xuerui</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shang, Jimin</creatorcontrib><creatorcontrib>Hu, Chuansheng</creatorcontrib><creatorcontrib>Ren, Yufen</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xuerui</au><au>Li, Yuanyuan</au><au>Shang, Jimin</au><au>Hu, Chuansheng</au><au>Ren, Yufen</au><au>Liu, Miao</au><au>Qi, Zeming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (-200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate-film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to - 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV.GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1696-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-02, Vol.11 (2), p.855-863 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_1992794682 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Blue shift Chemistry and Materials Science Condensed Matter Physics Diamond films Diamonds Diffraction External pressure Film thickness High pressure Hydrostatic pressure Interlayers Luminescence Materials Science Molybdenum disulfide Monolayers MoS2 阶段转变 高压力 厚度 电影 行为 光致发光 转变压力 Nanotechnology Optical properties Phase transitions Photoluminescence Photons Pressure Research Article Silicones Substrates Transition pressure Vibration mode X-rays |
title | Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-dependent%20phase%20transition%20and%20optical%20behavior%20of%20MoS2%20films%20under%20high%20pressure&rft.jtitle=Nano%20research&rft.au=Cheng,%20Xuerui&rft.date=2018-02-01&rft.volume=11&rft.issue=2&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1696-y&rft_dat=%3Cproquest_cross%3E1992794682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992794682&rft_id=info:pmid/&rft_cqvip_id=674733681&rfr_iscdi=true |