CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor
With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Part...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-02, Vol.11 (2), p.1124-1134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1134 |
---|---|
container_issue | 2 |
container_start_page | 1124 |
container_title | Nano research |
container_volume | 11 |
creator | Xia, Kailun Wang, Chunya Jian, Muqiang Wang, Qi Zhang, Yingying |
description | With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces. |
doi_str_mv | 10.1007/s12274-017-1731-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992792979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733704</cqvip_id><sourcerecordid>1992792979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</originalsourceid><addsrcrecordid>eNp9kM1PwyAchonRxDn9A7wRPVf5GpSjmZ_JEi_qldAWts6OdkA17q-XptN4kguEvM_vze8B4ByjK4yQuA6YEMEyhEWGBcXZ7gBMsJR5htI5_Hljwo7BSQhrhDjBLJ8ANX-7hUvffsYVbC20tVsa3_naxayp3w3sdIzGO1NBOuR0tzLOpFizgbb1UDvYN9HrYFyoY_2RAG9C6L2Bw1frT8GR1U0wZ_t7Cl7v717mj9ni-eFpfrPISspozApeaMvKXLCqQlogbCtONWLYWDLDJkdUcl6UtsI4l0LnvJCEC16Jgs9m0uR0Ci7HuZ1vt70JUa3b3rtUqdLqREgihUwpPKZK34bgjVVp1Y32XwojNXhUo0eVPKrBo9olhoxMGLQkO38m_wNd7ItWrVtuE_fbxAUTlArE6DdjvoIW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992792979</pqid></control><display><type>article</type><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><source>Springer Nature - Complete Springer Journals</source><creator>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</creator><creatorcontrib>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</creatorcontrib><description>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1731-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biomimetic materials ; Biomimetics ; Biotechnology ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Graphene ; Interfaces ; Materials Science ; Nanotechnology ; Natural selection ; Object recognition ; Polydimethylsiloxane ; Pressure ; Pressure sensors ; Research Article ; Sensitivity ; Sensors ; Silicone resins ; Skin ; Structural hierarchy ; Unloading ; Wearable technology ; 压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</subject><ispartof>Nano research, 2018-02, Vol.11 (2), p.1124-1134</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</citedby><cites>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1731-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1731-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xia, Kailun</creatorcontrib><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Jian, Muqiang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biomimetic materials</subject><subject>Biomimetics</subject><subject>Biotechnology</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Graphene</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural selection</subject><subject>Object recognition</subject><subject>Polydimethylsiloxane</subject><subject>Pressure</subject><subject>Pressure sensors</subject><subject>Research Article</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicone resins</subject><subject>Skin</subject><subject>Structural hierarchy</subject><subject>Unloading</subject><subject>Wearable technology</subject><subject>压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1PwyAchonRxDn9A7wRPVf5GpSjmZ_JEi_qldAWts6OdkA17q-XptN4kguEvM_vze8B4ByjK4yQuA6YEMEyhEWGBcXZ7gBMsJR5htI5_Hljwo7BSQhrhDjBLJ8ANX-7hUvffsYVbC20tVsa3_naxayp3w3sdIzGO1NBOuR0tzLOpFizgbb1UDvYN9HrYFyoY_2RAG9C6L2Bw1frT8GR1U0wZ_t7Cl7v717mj9ni-eFpfrPISspozApeaMvKXLCqQlogbCtONWLYWDLDJkdUcl6UtsI4l0LnvJCEC16Jgs9m0uR0Ci7HuZ1vt70JUa3b3rtUqdLqREgihUwpPKZK34bgjVVp1Y32XwojNXhUo0eVPKrBo9olhoxMGLQkO38m_wNd7ItWrVtuE_fbxAUTlArE6DdjvoIW</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Xia, Kailun</creator><creator>Wang, Chunya</creator><creator>Jian, Muqiang</creator><creator>Wang, Qi</creator><creator>Zhang, Yingying</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180201</creationdate><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><author>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biomimetic materials</topic><topic>Biomimetics</topic><topic>Biotechnology</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Graphene</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural selection</topic><topic>Object recognition</topic><topic>Polydimethylsiloxane</topic><topic>Pressure</topic><topic>Pressure sensors</topic><topic>Research Article</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicone resins</topic><topic>Skin</topic><topic>Structural hierarchy</topic><topic>Unloading</topic><topic>Wearable technology</topic><topic>压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Kailun</creatorcontrib><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Jian, Muqiang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Kailun</au><au>Wang, Chunya</au><au>Jian, Muqiang</au><au>Wang, Qi</au><au>Zhang, Yingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>1124</spage><epage>1134</epage><pages>1124-1134</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1731-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-02, Vol.11 (2), p.1124-1134 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_1992792979 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biomimetic materials Biomimetics Biotechnology Chemical vapor deposition Chemistry and Materials Science Condensed Matter Physics Graphene Interfaces Materials Science Nanotechnology Natural selection Object recognition Polydimethylsiloxane Pressure Pressure sensors Research Article Sensitivity Sensors Silicone resins Skin Structural hierarchy Unloading Wearable technology 压力传感器 CVD 电影 3D 图案 指纹 生长 自然选择 |
title | CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVD%20growth%20of%20fingerprint-like%20patterned%203D%20graphene%20film%20for%20an%20ultrasensitive%20pressure%20sensor&rft.jtitle=Nano%20research&rft.au=Xia,%20Kailun&rft.date=2018-02-01&rft.volume=11&rft.issue=2&rft.spage=1124&rft.epage=1134&rft.pages=1124-1134&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1731-z&rft_dat=%3Cproquest_cross%3E1992792979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992792979&rft_id=info:pmid/&rft_cqvip_id=674733704&rfr_iscdi=true |