CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor

With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-02, Vol.11 (2), p.1124-1134
Hauptverfasser: Xia, Kailun, Wang, Chunya, Jian, Muqiang, Wang, Qi, Zhang, Yingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1134
container_issue 2
container_start_page 1124
container_title Nano research
container_volume 11
creator Xia, Kailun
Wang, Chunya
Jian, Muqiang
Wang, Qi
Zhang, Yingying
description With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.
doi_str_mv 10.1007/s12274-017-1731-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992792979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733704</cqvip_id><sourcerecordid>1992792979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</originalsourceid><addsrcrecordid>eNp9kM1PwyAchonRxDn9A7wRPVf5GpSjmZ_JEi_qldAWts6OdkA17q-XptN4kguEvM_vze8B4ByjK4yQuA6YEMEyhEWGBcXZ7gBMsJR5htI5_Hljwo7BSQhrhDjBLJ8ANX-7hUvffsYVbC20tVsa3_naxayp3w3sdIzGO1NBOuR0tzLOpFizgbb1UDvYN9HrYFyoY_2RAG9C6L2Bw1frT8GR1U0wZ_t7Cl7v717mj9ni-eFpfrPISspozApeaMvKXLCqQlogbCtONWLYWDLDJkdUcl6UtsI4l0LnvJCEC16Jgs9m0uR0Ci7HuZ1vt70JUa3b3rtUqdLqREgihUwpPKZK34bgjVVp1Y32XwojNXhUo0eVPKrBo9olhoxMGLQkO38m_wNd7ItWrVtuE_fbxAUTlArE6DdjvoIW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992792979</pqid></control><display><type>article</type><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><source>Springer Nature - Complete Springer Journals</source><creator>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</creator><creatorcontrib>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</creatorcontrib><description>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1731-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biomimetic materials ; Biomimetics ; Biotechnology ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Graphene ; Interfaces ; Materials Science ; Nanotechnology ; Natural selection ; Object recognition ; Polydimethylsiloxane ; Pressure ; Pressure sensors ; Research Article ; Sensitivity ; Sensors ; Silicone resins ; Skin ; Structural hierarchy ; Unloading ; Wearable technology ; 压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</subject><ispartof>Nano research, 2018-02, Vol.11 (2), p.1124-1134</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</citedby><cites>FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1731-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1731-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xia, Kailun</creatorcontrib><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Jian, Muqiang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biomimetic materials</subject><subject>Biomimetics</subject><subject>Biotechnology</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Graphene</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural selection</subject><subject>Object recognition</subject><subject>Polydimethylsiloxane</subject><subject>Pressure</subject><subject>Pressure sensors</subject><subject>Research Article</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicone resins</subject><subject>Skin</subject><subject>Structural hierarchy</subject><subject>Unloading</subject><subject>Wearable technology</subject><subject>压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1PwyAchonRxDn9A7wRPVf5GpSjmZ_JEi_qldAWts6OdkA17q-XptN4kguEvM_vze8B4ByjK4yQuA6YEMEyhEWGBcXZ7gBMsJR5htI5_Hljwo7BSQhrhDjBLJ8ANX-7hUvffsYVbC20tVsa3_naxayp3w3sdIzGO1NBOuR0tzLOpFizgbb1UDvYN9HrYFyoY_2RAG9C6L2Bw1frT8GR1U0wZ_t7Cl7v717mj9ni-eFpfrPISspozApeaMvKXLCqQlogbCtONWLYWDLDJkdUcl6UtsI4l0LnvJCEC16Jgs9m0uR0Ci7HuZ1vt70JUa3b3rtUqdLqREgihUwpPKZK34bgjVVp1Y32XwojNXhUo0eVPKrBo9olhoxMGLQkO38m_wNd7ItWrVtuE_fbxAUTlArE6DdjvoIW</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Xia, Kailun</creator><creator>Wang, Chunya</creator><creator>Jian, Muqiang</creator><creator>Wang, Qi</creator><creator>Zhang, Yingying</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180201</creationdate><title>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</title><author>Xia, Kailun ; Wang, Chunya ; Jian, Muqiang ; Wang, Qi ; Zhang, Yingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b6baf4c874dd0a701fd63a041ef251e803966bcfd11897a86b92676d7b6559e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biomimetic materials</topic><topic>Biomimetics</topic><topic>Biotechnology</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Graphene</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural selection</topic><topic>Object recognition</topic><topic>Polydimethylsiloxane</topic><topic>Pressure</topic><topic>Pressure sensors</topic><topic>Research Article</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicone resins</topic><topic>Skin</topic><topic>Structural hierarchy</topic><topic>Unloading</topic><topic>Wearable technology</topic><topic>压力传感器;CVD;电影;3D;图案;指纹;生长;自然选择</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Kailun</creatorcontrib><creatorcontrib>Wang, Chunya</creatorcontrib><creatorcontrib>Jian, Muqiang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Kailun</au><au>Wang, Chunya</au><au>Jian, Muqiang</au><au>Wang, Qi</au><au>Zhang, Yingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>1124</spage><epage>1134</epage><pages>1124-1134</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularl3 human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown three-dimensional (3D) graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)-1 for 0-0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured polydimethylsiloxane (PDMS) films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (〈 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1731-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2018-02, Vol.11 (2), p.1124-1134
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_1992792979
source Springer Nature - Complete Springer Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biomimetic materials
Biomimetics
Biotechnology
Chemical vapor deposition
Chemistry and Materials Science
Condensed Matter Physics
Graphene
Interfaces
Materials Science
Nanotechnology
Natural selection
Object recognition
Polydimethylsiloxane
Pressure
Pressure sensors
Research Article
Sensitivity
Sensors
Silicone resins
Skin
Structural hierarchy
Unloading
Wearable technology
压力传感器
CVD
电影
3D
图案
指纹
生长
自然选择
title CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVD%20growth%20of%20fingerprint-like%20patterned%203D%20graphene%20film%20for%20an%20ultrasensitive%20pressure%20sensor&rft.jtitle=Nano%20research&rft.au=Xia,%20Kailun&rft.date=2018-02-01&rft.volume=11&rft.issue=2&rft.spage=1124&rft.epage=1134&rft.pages=1124-1134&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1731-z&rft_dat=%3Cproquest_cross%3E1992792979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992792979&rft_id=info:pmid/&rft_cqvip_id=674733704&rfr_iscdi=true