Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface

We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset D of two-dimensional Euclidean point space E 2 into a surface S in three-dimensional Euclidean point space E 3 . To be isometric, such a deformation must...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2018-02, Vol.130 (2), p.145-195
Hauptverfasser: Chen, Yi-Chao, Fosdick, Roger, Fried, Eliot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 145
container_title Journal of elasticity
container_volume 130
creator Chen, Yi-Chao
Fosdick, Roger
Fried, Eliot
description We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset D of two-dimensional Euclidean point space E 2 into a surface S in three-dimensional Euclidean point space E 3 . To be isometric, such a deformation must preserve the length of every possible arc of material points on D . Characterizing the curves of zero principal curvature of S is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in E 2 , based upon an à priori chosen pre-image form of the curves of zero principal curvature in D , and use that coordinate system to construct the most general isometric deformation of D to a smooth surface S . A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of S are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015 ).
doi_str_mv 10.1007/s10659-017-9637-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992792936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992792936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b928f58706101149e8c6b595892d1a628e50b91d89eeef93fa98204b912d1b093</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2Y_kKPWroCitnkN2O6lbupuaZAX_vSnroRdPA_M-7ww8hFwyuGYA1U1gUBaKAquoKkVF-RGZsKISlJeSHZMJiCqnohDFKTkLYQMASuYwIfUCdx4D9tHE1vWZs5nJlp1z8TObB9dh9G2T3aF1vjsg3ramNz57MRF9a7bZAtf7rO2jS-ls8N-4ypaDt6bBc3JizTbgxd-cko-H-_fZE31-fZzPbp9pk4OItFZc2kJWUDJgLFcom7IuVCEVXzFTcokF1IqtpEJEq4Q1SnLI0yrlNSgxJVfj3Z13XwOGqDdu8H16qZlSvFJciTJRbKQa70LwaPXOt53xP5qB3qvUo0qdVOq9Ss1Th4-dkNh-jf7g8r-lX0cPdaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992792936</pqid></control><display><type>article</type><title>Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Yi-Chao ; Fosdick, Roger ; Fried, Eliot</creator><creatorcontrib>Chen, Yi-Chao ; Fosdick, Roger ; Fried, Eliot</creatorcontrib><description>We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset D of two-dimensional Euclidean point space E 2 into a surface S in three-dimensional Euclidean point space E 3 . To be isometric, such a deformation must preserve the length of every possible arc of material points on D . Characterizing the curves of zero principal curvature of S is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in E 2 , based upon an à priori chosen pre-image form of the curves of zero principal curvature in D , and use that coordinate system to construct the most general isometric deformation of D to a smooth surface S . A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of S are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015 ).</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-017-9637-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Conical bodies ; Curvature ; Deformation ; Euclidean geometry ; Physics ; Physics and Astronomy ; Representations</subject><ispartof>Journal of elasticity, 2018-02, Vol.130 (2), p.145-195</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Elasticity is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b928f58706101149e8c6b595892d1a628e50b91d89eeef93fa98204b912d1b093</citedby><cites>FETCH-LOGICAL-c403t-b928f58706101149e8c6b595892d1a628e50b91d89eeef93fa98204b912d1b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-017-9637-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-017-9637-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Yi-Chao</creatorcontrib><creatorcontrib>Fosdick, Roger</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><title>Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset D of two-dimensional Euclidean point space E 2 into a surface S in three-dimensional Euclidean point space E 3 . To be isometric, such a deformation must preserve the length of every possible arc of material points on D . Characterizing the curves of zero principal curvature of S is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in E 2 , based upon an à priori chosen pre-image form of the curves of zero principal curvature in D , and use that coordinate system to construct the most general isometric deformation of D to a smooth surface S . A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of S are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015 ).</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Conical bodies</subject><subject>Curvature</subject><subject>Deformation</subject><subject>Euclidean geometry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Representations</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2Y_kKPWroCitnkN2O6lbupuaZAX_vSnroRdPA_M-7ww8hFwyuGYA1U1gUBaKAquoKkVF-RGZsKISlJeSHZMJiCqnohDFKTkLYQMASuYwIfUCdx4D9tHE1vWZs5nJlp1z8TObB9dh9G2T3aF1vjsg3ramNz57MRF9a7bZAtf7rO2jS-ls8N-4ypaDt6bBc3JizTbgxd-cko-H-_fZE31-fZzPbp9pk4OItFZc2kJWUDJgLFcom7IuVCEVXzFTcokF1IqtpEJEq4Q1SnLI0yrlNSgxJVfj3Z13XwOGqDdu8H16qZlSvFJciTJRbKQa70LwaPXOt53xP5qB3qvUo0qdVOq9Ss1Th4-dkNh-jf7g8r-lX0cPdaQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Chen, Yi-Chao</creator><creator>Fosdick, Roger</creator><creator>Fried, Eliot</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20180201</creationdate><title>Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface</title><author>Chen, Yi-Chao ; Fosdick, Roger ; Fried, Eliot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b928f58706101149e8c6b595892d1a628e50b91d89eeef93fa98204b912d1b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Conical bodies</topic><topic>Curvature</topic><topic>Deformation</topic><topic>Euclidean geometry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yi-Chao</creatorcontrib><creatorcontrib>Fosdick, Roger</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yi-Chao</au><au>Fosdick, Roger</au><au>Fried, Eliot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>130</volume><issue>2</issue><spage>145</spage><epage>195</epage><pages>145-195</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset D of two-dimensional Euclidean point space E 2 into a surface S in three-dimensional Euclidean point space E 3 . To be isometric, such a deformation must preserve the length of every possible arc of material points on D . Characterizing the curves of zero principal curvature of S is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in E 2 , based upon an à priori chosen pre-image form of the curves of zero principal curvature in D , and use that coordinate system to construct the most general isometric deformation of D to a smooth surface S . A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of S are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015 ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-017-9637-2</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2018-02, Vol.130 (2), p.145-195
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_journals_1992792936
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Classical Mechanics
Conical bodies
Curvature
Deformation
Euclidean geometry
Physics
Physics and Astronomy
Representations
title Representation of a Smooth Isometric Deformation of a Planar Material Region into a Curved Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20a%20Smooth%20Isometric%20Deformation%20of%20a%20Planar%20Material%20Region%20into%20a%20Curved%20Surface&rft.jtitle=Journal%20of%20elasticity&rft.au=Chen,%20Yi-Chao&rft.date=2018-02-01&rft.volume=130&rft.issue=2&rft.spage=145&rft.epage=195&rft.pages=145-195&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-017-9637-2&rft_dat=%3Cproquest_cross%3E1992792936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992792936&rft_id=info:pmid/&rfr_iscdi=true