Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating
Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen recommendations based on plant sensing implicitly assume that parameters are estimated without error. A Bayesian updating method w...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2018-02, Vol.19 (1), p.79-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Precision agriculture |
container_volume | 19 |
creator | McFadden, Brandon R. Brorsen, B. Wade Raun, William R. |
description | Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen recommendations based on plant sensing implicitly assume that parameters are estimated without error. A Bayesian updating method was developed that can incorporate precision plant sensing information and is simple enough that it could be computed on-the-go. The method can consider producers prior information and can account for parameter uncertainty. Bayesian updating gives higher nitrogen recommendations than plant sensing recommendations using a plug-in method. These recommendations increase net returns over the previous recommendations, but not enough to make plant sensing profitable in this scenario. |
doi_str_mv | 10.1007/s11119-017-9499-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992792856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992792856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-72119eb90ebe0fc33ac9208bff5b923da3bd27c44e0208eef0e2544bc5aed3f03</originalsourceid><addsrcrecordid>eNp1kDlPAzEQhS0EEuH4AXSWqA2-9nAJEZcUAQXUlr07XjlK7MXeFOHX42gpaJhmRqP3vRk9hK4YvWGUNreZlVKEsoYoqRSRR2jBqkYQVrP2uMyirQjnVX2KznJeU1ooyRfo_dVPKQ4QsIM0-Y3_hoQTdHG7hdCbyceQsTUZehwDHjcmTDhDyD4M2IQe35s9ZG8C3o0HdRgu0IkzmwyXv_0cfT4-fCyfyert6WV5tyKdYPVEGl7eBasoWKCuE8J0itPWOldZxUVvhO1500kJtKwBHAVeSWm7ykAvHBXn6Hr2HVP82kGe9DruUignNVOKN4q3VV1UbFZ1KeacwOkx-a1Je82oPgSn5-B0CU4fgtOyMHxmctGGAdIf53-hHzy6cfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992792856</pqid></control><display><type>article</type><title>Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating</title><source>SpringerLink Journals - AutoHoldings</source><creator>McFadden, Brandon R. ; Brorsen, B. Wade ; Raun, William R.</creator><creatorcontrib>McFadden, Brandon R. ; Brorsen, B. Wade ; Raun, William R.</creatorcontrib><description>Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen recommendations based on plant sensing implicitly assume that parameters are estimated without error. A Bayesian updating method was developed that can incorporate precision plant sensing information and is simple enough that it could be computed on-the-go. The method can consider producers prior information and can account for parameter uncertainty. Bayesian updating gives higher nitrogen recommendations than plant sensing recommendations using a plug-in method. These recommendations increase net returns over the previous recommendations, but not enough to make plant sensing profitable in this scenario.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-017-9499-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Atmospheric Sciences ; Bayesian analysis ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Computer Science ; Detection ; Error detection ; Life Sciences ; Nitrogen ; Parameter estimation ; Parameter uncertainty ; Physics ; Remote Sensing/Photogrammetry ; Soil Science & Conservation ; Statistics for Engineering ; Wheat ; Winter wheat</subject><ispartof>Precision agriculture, 2018-02, Vol.19 (1), p.79-92</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Precision Agriculture is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-72119eb90ebe0fc33ac9208bff5b923da3bd27c44e0208eef0e2544bc5aed3f03</citedby><cites>FETCH-LOGICAL-c316t-72119eb90ebe0fc33ac9208bff5b923da3bd27c44e0208eef0e2544bc5aed3f03</cites><orcidid>0000-0001-7109-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-017-9499-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-017-9499-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>McFadden, Brandon R.</creatorcontrib><creatorcontrib>Brorsen, B. Wade</creatorcontrib><creatorcontrib>Raun, William R.</creatorcontrib><title>Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen recommendations based on plant sensing implicitly assume that parameters are estimated without error. A Bayesian updating method was developed that can incorporate precision plant sensing information and is simple enough that it could be computed on-the-go. The method can consider producers prior information and can account for parameter uncertainty. Bayesian updating gives higher nitrogen recommendations than plant sensing recommendations using a plug-in method. These recommendations increase net returns over the previous recommendations, but not enough to make plant sensing profitable in this scenario.</description><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Detection</subject><subject>Error detection</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Physics</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Soil Science & Conservation</subject><subject>Statistics for Engineering</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDlPAzEQhS0EEuH4AXSWqA2-9nAJEZcUAQXUlr07XjlK7MXeFOHX42gpaJhmRqP3vRk9hK4YvWGUNreZlVKEsoYoqRSRR2jBqkYQVrP2uMyirQjnVX2KznJeU1ooyRfo_dVPKQ4QsIM0-Y3_hoQTdHG7hdCbyceQsTUZehwDHjcmTDhDyD4M2IQe35s9ZG8C3o0HdRgu0IkzmwyXv_0cfT4-fCyfyert6WV5tyKdYPVEGl7eBasoWKCuE8J0itPWOldZxUVvhO1500kJtKwBHAVeSWm7ykAvHBXn6Hr2HVP82kGe9DruUignNVOKN4q3VV1UbFZ1KeacwOkx-a1Je82oPgSn5-B0CU4fgtOyMHxmctGGAdIf53-hHzy6cfA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>McFadden, Brandon R.</creator><creator>Brorsen, B. Wade</creator><creator>Raun, William R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7109-7717</orcidid></search><sort><creationdate>20180201</creationdate><title>Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating</title><author>McFadden, Brandon R. ; Brorsen, B. Wade ; Raun, William R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-72119eb90ebe0fc33ac9208bff5b923da3bd27c44e0208eef0e2544bc5aed3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Detection</topic><topic>Error detection</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Physics</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Soil Science & Conservation</topic><topic>Statistics for Engineering</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McFadden, Brandon R.</creatorcontrib><creatorcontrib>Brorsen, B. Wade</creatorcontrib><creatorcontrib>Raun, William R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McFadden, Brandon R.</au><au>Brorsen, B. Wade</au><au>Raun, William R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>79</spage><epage>92</epage><pages>79-92</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption rates by producers are low. Current algorithms that provide nitrogen recommendations based on plant sensing implicitly assume that parameters are estimated without error. A Bayesian updating method was developed that can incorporate precision plant sensing information and is simple enough that it could be computed on-the-go. The method can consider producers prior information and can account for parameter uncertainty. Bayesian updating gives higher nitrogen recommendations than plant sensing recommendations using a plug-in method. These recommendations increase net returns over the previous recommendations, but not enough to make plant sensing profitable in this scenario.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-017-9499-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7109-7717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2256 |
ispartof | Precision agriculture, 2018-02, Vol.19 (1), p.79-92 |
issn | 1385-2256 1573-1618 |
language | eng |
recordid | cdi_proquest_journals_1992792856 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Atmospheric Sciences Bayesian analysis Biomedical and Life Sciences Chemistry and Earth Sciences Computer Science Detection Error detection Life Sciences Nitrogen Parameter estimation Parameter uncertainty Physics Remote Sensing/Photogrammetry Soil Science & Conservation Statistics for Engineering Wheat Winter wheat |
title | Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20fertilizer%20recommendations%20based%20on%20plant%20sensing%20and%20Bayesian%20updating&rft.jtitle=Precision%20agriculture&rft.au=McFadden,%20Brandon%20R.&rft.date=2018-02-01&rft.volume=19&rft.issue=1&rft.spage=79&rft.epage=92&rft.pages=79-92&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-017-9499-4&rft_dat=%3Cproquest_cross%3E1992792856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992792856&rft_id=info:pmid/&rfr_iscdi=true |