Microstructure and rheology relationships for shear thickening colloidal dispersions
The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-indu...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-04, Vol.769, p.242-276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | |
container_start_page | 242 |
container_title | Journal of fluid mechanics |
container_volume | 769 |
creator | Gurnon, A. Kate Wagner, Norman J. |
description | The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-induced microstructure of a concentrated near-hard-sphere colloidal dispersion through the shear thickening transition using small-angle neutron scattering (SANS) measurements made in three orthogonal planes during steady shear. New instrumentation coupled with theoretical derivations of the stress-SANS rule enable rigorous testing of the relationship between this non-equilibrium microstructure and the observed macroscopic shear rheology. The thermodynamic and hydrodynamic components of the stress that drive shear thinning, shear thickening and first normal stress differences are separately defined via stress-SANS rules and compared to the rheological behaviour of the dispersion during steady shear. Observations of shear-induced hydrocluster formation is in good agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear rheology and non-equilibrium microstructure of a model system provides new insights into suspension mechanics as well as a method to rigorously test constitutive equations for colloidal suspension rheology. |
doi_str_mv | 10.1017/jfm.2015.128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992593388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_128</cupid><sourcerecordid>1992593388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9045e579a7ee079c6b008d1254baf963eb8bd8abcf270175b1196d787ee15b063</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqWw8QMssZLynhPH8YgqvqQiljJbduI0Lmkc7GTovycRHRiY3nLevbqHkFuEFQKKh319WDFAvkJWnJEFZrlMRJ7xc7IAYCxBZHBJrmLcA2AKUizI9t2VwcchjOUwBkt1V9HQWN_63ZEG2-rB-S42ro-09oHGxupAh8aVX7Zz3Y6Wvm29q3RLKxd7G-KMX5OLWrfR3pzuknw-P23Xr8nm4-Vt_bhJygz4kEjIuOVCamEtCFnmBqCokPHM6FrmqTWFqQptypqJaR43iDKvRDHhyA3k6ZLc_eb2wX-PNg5q78fQTZUKpWRcpmlRTNT9LzUPjcHWqg_uoMNRIajZm5q8qdmbmrxN-OqE64MJrtrZP6n_PfwAtOlxGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992593388</pqid></control><display><type>article</type><title>Microstructure and rheology relationships for shear thickening colloidal dispersions</title><source>Cambridge Journals</source><creator>Gurnon, A. Kate ; Wagner, Norman J.</creator><creatorcontrib>Gurnon, A. Kate ; Wagner, Norman J.</creatorcontrib><description>The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-induced microstructure of a concentrated near-hard-sphere colloidal dispersion through the shear thickening transition using small-angle neutron scattering (SANS) measurements made in three orthogonal planes during steady shear. New instrumentation coupled with theoretical derivations of the stress-SANS rule enable rigorous testing of the relationship between this non-equilibrium microstructure and the observed macroscopic shear rheology. The thermodynamic and hydrodynamic components of the stress that drive shear thinning, shear thickening and first normal stress differences are separately defined via stress-SANS rules and compared to the rheological behaviour of the dispersion during steady shear. Observations of shear-induced hydrocluster formation is in good agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear rheology and non-equilibrium microstructure of a model system provides new insights into suspension mechanics as well as a method to rigorously test constitutive equations for colloidal suspension rheology.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.128</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Colloids ; Computer simulation ; Constitutive equations ; Constitutive relationships ; Dispersion ; Dispersions ; Dynamics ; Fluid mechanics ; Forces (mechanics) ; Friction ; Hydrodynamics ; Instrumentation ; Mathematical models ; Mechanics ; Microstructure ; Neutron scattering ; Normal stress ; Orthogonality ; Planes ; Rheological properties ; Rheology ; Shear ; Shear thickening (liquids) ; Shear thinning (liquids) ; Simulation ; Symmetry ; Test procedures ; Thickening</subject><ispartof>Journal of fluid mechanics, 2015-04, Vol.769, p.242-276</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9045e579a7ee079c6b008d1254baf963eb8bd8abcf270175b1196d787ee15b063</citedby><cites>FETCH-LOGICAL-c405t-9045e579a7ee079c6b008d1254baf963eb8bd8abcf270175b1196d787ee15b063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015001287/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Gurnon, A. Kate</creatorcontrib><creatorcontrib>Wagner, Norman J.</creatorcontrib><title>Microstructure and rheology relationships for shear thickening colloidal dispersions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-induced microstructure of a concentrated near-hard-sphere colloidal dispersion through the shear thickening transition using small-angle neutron scattering (SANS) measurements made in three orthogonal planes during steady shear. New instrumentation coupled with theoretical derivations of the stress-SANS rule enable rigorous testing of the relationship between this non-equilibrium microstructure and the observed macroscopic shear rheology. The thermodynamic and hydrodynamic components of the stress that drive shear thinning, shear thickening and first normal stress differences are separately defined via stress-SANS rules and compared to the rheological behaviour of the dispersion during steady shear. Observations of shear-induced hydrocluster formation is in good agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear rheology and non-equilibrium microstructure of a model system provides new insights into suspension mechanics as well as a method to rigorously test constitutive equations for colloidal suspension rheology.</description><subject>Colloids</subject><subject>Computer simulation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Dynamics</subject><subject>Fluid mechanics</subject><subject>Forces (mechanics)</subject><subject>Friction</subject><subject>Hydrodynamics</subject><subject>Instrumentation</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Microstructure</subject><subject>Neutron scattering</subject><subject>Normal stress</subject><subject>Orthogonality</subject><subject>Planes</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear thickening (liquids)</subject><subject>Shear thinning (liquids)</subject><subject>Simulation</subject><subject>Symmetry</subject><subject>Test procedures</subject><subject>Thickening</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAURS0EEqWw8QMssZLynhPH8YgqvqQiljJbduI0Lmkc7GTovycRHRiY3nLevbqHkFuEFQKKh319WDFAvkJWnJEFZrlMRJ7xc7IAYCxBZHBJrmLcA2AKUizI9t2VwcchjOUwBkt1V9HQWN_63ZEG2-rB-S42ro-09oHGxupAh8aVX7Zz3Y6Wvm29q3RLKxd7G-KMX5OLWrfR3pzuknw-P23Xr8nm4-Vt_bhJygz4kEjIuOVCamEtCFnmBqCokPHM6FrmqTWFqQptypqJaR43iDKvRDHhyA3k6ZLc_eb2wX-PNg5q78fQTZUKpWRcpmlRTNT9LzUPjcHWqg_uoMNRIajZm5q8qdmbmrxN-OqE64MJrtrZP6n_PfwAtOlxGg</recordid><startdate>20150425</startdate><enddate>20150425</enddate><creator>Gurnon, A. Kate</creator><creator>Wagner, Norman J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150425</creationdate><title>Microstructure and rheology relationships for shear thickening colloidal dispersions</title><author>Gurnon, A. Kate ; Wagner, Norman J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9045e579a7ee079c6b008d1254baf963eb8bd8abcf270175b1196d787ee15b063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Colloids</topic><topic>Computer simulation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Dynamics</topic><topic>Fluid mechanics</topic><topic>Forces (mechanics)</topic><topic>Friction</topic><topic>Hydrodynamics</topic><topic>Instrumentation</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Microstructure</topic><topic>Neutron scattering</topic><topic>Normal stress</topic><topic>Orthogonality</topic><topic>Planes</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear thickening (liquids)</topic><topic>Shear thinning (liquids)</topic><topic>Simulation</topic><topic>Symmetry</topic><topic>Test procedures</topic><topic>Thickening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurnon, A. Kate</creatorcontrib><creatorcontrib>Wagner, Norman J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurnon, A. Kate</au><au>Wagner, Norman J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and rheology relationships for shear thickening colloidal dispersions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-04-25</date><risdate>2015</risdate><volume>769</volume><spage>242</spage><epage>276</epage><pages>242-276</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-induced microstructure of a concentrated near-hard-sphere colloidal dispersion through the shear thickening transition using small-angle neutron scattering (SANS) measurements made in three orthogonal planes during steady shear. New instrumentation coupled with theoretical derivations of the stress-SANS rule enable rigorous testing of the relationship between this non-equilibrium microstructure and the observed macroscopic shear rheology. The thermodynamic and hydrodynamic components of the stress that drive shear thinning, shear thickening and first normal stress differences are separately defined via stress-SANS rules and compared to the rheological behaviour of the dispersion during steady shear. Observations of shear-induced hydrocluster formation is in good agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear rheology and non-equilibrium microstructure of a model system provides new insights into suspension mechanics as well as a method to rigorously test constitutive equations for colloidal suspension rheology.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.128</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-04, Vol.769, p.242-276 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1992593388 |
source | Cambridge Journals |
subjects | Colloids Computer simulation Constitutive equations Constitutive relationships Dispersion Dispersions Dynamics Fluid mechanics Forces (mechanics) Friction Hydrodynamics Instrumentation Mathematical models Mechanics Microstructure Neutron scattering Normal stress Orthogonality Planes Rheological properties Rheology Shear Shear thickening (liquids) Shear thinning (liquids) Simulation Symmetry Test procedures Thickening |
title | Microstructure and rheology relationships for shear thickening colloidal dispersions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20rheology%20relationships%20for%20shear%20thickening%20colloidal%20dispersions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gurnon,%20A.%C2%A0Kate&rft.date=2015-04-25&rft.volume=769&rft.spage=242&rft.epage=276&rft.pages=242-276&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.128&rft_dat=%3Cproquest_cross%3E1992593388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992593388&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_128&rfr_iscdi=true |