A dynamic observer to capture and control perturbation energy in noise amplifiers

In this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-11, Vol.758, p.728-753
Hauptverfasser: Guzmán Iñigo, Juan, Sipp, Denis, Schmid, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue
container_start_page 728
container_title Journal of fluid mechanics
container_volume 758
creator Guzmán Iñigo, Juan
Sipp, Denis
Schmid, Peter J.
description In this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a receptivity process, is not known. A system identification approach, rather than a classical Galerkin technique, is used to extract the model from time-synchronous velocity snapshots and wall shear-stress measurements. The technique will be illustrated for the case of a transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the technique applicable to an experimental set-up. The proposed approach combines a reduction of the degrees of freedom of the system by a projection of the velocity snapshots onto a proper orthogonal decomposition basis combined with a system identification technique to obtain a state-space model. This model is then used in a feedforward control set-up to significantly reduce the kinetic energy of the perturbation field and thus successfully delay transition.
doi_str_mv 10.1017/jfm.2014.553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992582530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_553</cupid><sourcerecordid>1992582530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-4e5f4754e160e62a2800832c7043e13098113a98f69852de3ed365f3e758309b3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0BAvLlrPja7ybGIX1AQQc8huzspKd1kTbZC_70pLeLB08DMM88ML0LXlJSU0OZ-bYeSEVqVQvATNKNVrYqmrsQpmhHCWEEpI-foIqU1IZQT1czQ-wL3O28G1-HQJojfEPEUcGfGaRsBG9_jLvgphg0eIeZeayYXPAYPcbXDzmMfXMrgMG6cdRDTJTqzZpPg6ljn6PPp8ePhpVi-Pb8-LJZFxxsyFRUIWzWiAloTqJlhkhDJWdeQisP-OUkpN0raWknBeuDQ81pYDo2QedryObo5eMcYvraQJr0O2-jzSU2VYkIywUmm7g5UF0NKEaweoxtM3GlK9D40nUPT-9B0Di3jt0epSZ3Z2Gh859LvDpOKKiFU5sqj1gxtdP0K_lz_T_wDQzx6WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992582530</pqid></control><display><type>article</type><title>A dynamic observer to capture and control perturbation energy in noise amplifiers</title><source>Cambridge Journals</source><creator>Guzmán Iñigo, Juan ; Sipp, Denis ; Schmid, Peter J.</creator><creatorcontrib>Guzmán Iñigo, Juan ; Sipp, Denis ; Schmid, Peter J.</creatorcontrib><description>In this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a receptivity process, is not known. A system identification approach, rather than a classical Galerkin technique, is used to extract the model from time-synchronous velocity snapshots and wall shear-stress measurements. The technique will be illustrated for the case of a transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the technique applicable to an experimental set-up. The proposed approach combines a reduction of the degrees of freedom of the system by a projection of the velocity snapshots onto a proper orthogonal decomposition basis combined with a system identification technique to obtain a state-space model. This model is then used in a feedforward control set-up to significantly reduce the kinetic energy of the perturbation field and thus successfully delay transition.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.553</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplifiers ; Boundary layer transition ; Boundary layers ; Computer simulation ; Control theory ; Dynamics ; Exact sciences and technology ; Feedforward control ; Flow control ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Galerkin method ; Identification ; Kinetic energy ; Mathematical models ; Noise ; Noise control ; Physics ; Plate boundaries ; Proper Orthogonal Decomposition ; Reduced order models ; State space models ; System identification ; Velocity</subject><ispartof>Journal of fluid mechanics, 2014-11, Vol.758, p.728-753</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-4e5f4754e160e62a2800832c7043e13098113a98f69852de3ed365f3e758309b3</citedby><cites>FETCH-LOGICAL-c370t-4e5f4754e160e62a2800832c7043e13098113a98f69852de3ed365f3e758309b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014005539/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28919559$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guzmán Iñigo, Juan</creatorcontrib><creatorcontrib>Sipp, Denis</creatorcontrib><creatorcontrib>Schmid, Peter J.</creatorcontrib><title>A dynamic observer to capture and control perturbation energy in noise amplifiers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a receptivity process, is not known. A system identification approach, rather than a classical Galerkin technique, is used to extract the model from time-synchronous velocity snapshots and wall shear-stress measurements. The technique will be illustrated for the case of a transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the technique applicable to an experimental set-up. The proposed approach combines a reduction of the degrees of freedom of the system by a projection of the velocity snapshots onto a proper orthogonal decomposition basis combined with a system identification technique to obtain a state-space model. This model is then used in a feedforward control set-up to significantly reduce the kinetic energy of the perturbation field and thus successfully delay transition.</description><subject>Amplifiers</subject><subject>Boundary layer transition</subject><subject>Boundary layers</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feedforward control</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin method</subject><subject>Identification</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise control</subject><subject>Physics</subject><subject>Plate boundaries</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>State space models</subject><subject>System identification</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0BAvLlrPja7ybGIX1AQQc8huzspKd1kTbZC_70pLeLB08DMM88ML0LXlJSU0OZ-bYeSEVqVQvATNKNVrYqmrsQpmhHCWEEpI-foIqU1IZQT1czQ-wL3O28G1-HQJojfEPEUcGfGaRsBG9_jLvgphg0eIeZeayYXPAYPcbXDzmMfXMrgMG6cdRDTJTqzZpPg6ljn6PPp8ePhpVi-Pb8-LJZFxxsyFRUIWzWiAloTqJlhkhDJWdeQisP-OUkpN0raWknBeuDQ81pYDo2QedryObo5eMcYvraQJr0O2-jzSU2VYkIywUmm7g5UF0NKEaweoxtM3GlK9D40nUPT-9B0Di3jt0epSZ3Z2Gh859LvDpOKKiFU5sqj1gxtdP0K_lz_T_wDQzx6WQ</recordid><startdate>20141110</startdate><enddate>20141110</enddate><creator>Guzmán Iñigo, Juan</creator><creator>Sipp, Denis</creator><creator>Schmid, Peter J.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20141110</creationdate><title>A dynamic observer to capture and control perturbation energy in noise amplifiers</title><author>Guzmán Iñigo, Juan ; Sipp, Denis ; Schmid, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-4e5f4754e160e62a2800832c7043e13098113a98f69852de3ed365f3e758309b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplifiers</topic><topic>Boundary layer transition</topic><topic>Boundary layers</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feedforward control</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin method</topic><topic>Identification</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise control</topic><topic>Physics</topic><topic>Plate boundaries</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>State space models</topic><topic>System identification</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán Iñigo, Juan</creatorcontrib><creatorcontrib>Sipp, Denis</creatorcontrib><creatorcontrib>Schmid, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán Iñigo, Juan</au><au>Sipp, Denis</au><au>Schmid, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic observer to capture and control perturbation energy in noise amplifiers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-11-10</date><risdate>2014</risdate><volume>758</volume><spage>728</spage><epage>753</epage><pages>728-753</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>In this article, we introduce techniques to build a reduced-order model of a fluid system that accurately predicts the dynamics of a flow from local wall measurements. This is particularly difficult in the case of noise amplifiers where the upstream noise environment, triggering the flow via a receptivity process, is not known. A system identification approach, rather than a classical Galerkin technique, is used to extract the model from time-synchronous velocity snapshots and wall shear-stress measurements. The technique will be illustrated for the case of a transitional flat-plate boundary layer, where the snapshots of the flow are obtained from direct numerical simulations. Particular attention is directed to limiting the processed data to data that would be readily available in experiments, thus making the technique applicable to an experimental set-up. The proposed approach combines a reduction of the degrees of freedom of the system by a projection of the velocity snapshots onto a proper orthogonal decomposition basis combined with a system identification technique to obtain a state-space model. This model is then used in a feedforward control set-up to significantly reduce the kinetic energy of the perturbation field and thus successfully delay transition.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.553</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-11, Vol.758, p.728-753
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1992582530
source Cambridge Journals
subjects Amplifiers
Boundary layer transition
Boundary layers
Computer simulation
Control theory
Dynamics
Exact sciences and technology
Feedforward control
Flow control
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Galerkin method
Identification
Kinetic energy
Mathematical models
Noise
Noise control
Physics
Plate boundaries
Proper Orthogonal Decomposition
Reduced order models
State space models
System identification
Velocity
title A dynamic observer to capture and control perturbation energy in noise amplifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20observer%20to%20capture%20and%20control%20perturbation%20energy%20in%20noise%20amplifiers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Guzm%C3%A1n%20I%C3%B1igo,%20Juan&rft.date=2014-11-10&rft.volume=758&rft.spage=728&rft.epage=753&rft.pages=728-753&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.553&rft_dat=%3Cproquest_cross%3E1992582530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992582530&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_553&rfr_iscdi=true