Turbulence statistics in Couette flow at high Reynolds number
We investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqsla...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2014-11, Vol.758, p.327-343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | |
container_start_page | 327 |
container_title | Journal of fluid mechanics |
container_volume | 758 |
creator | Pirozzoli, Sergio Bernardini, Matteo Orlandi, Paolo |
description | We investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$
, where
$h$
is the channel half-height and
$\delta _v$
is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region. |
doi_str_mv | 10.1017/jfm.2014.529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992582176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_529</cupid><sourcerecordid>1992582176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-7fb155b0a8aa84894b3adcc8a02d58d7ee3e05429c89cd7651f45298e08afdcb3</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKs7f0BA3DljkklmkoULKX5BQZC6DkkmaWeYj5pkkP57U1rEhau3Oe_c9y4A1xjlGOHqvnV9ThCmOSPiBMwwLUVWlZSdghlChGQYE3QOLkJoEcIFEtUMPKwmr6fODsbCEFVsQmxMgM0AF-NkY7TQdeM3VBFumvUGftjdMHZ1gMPUa-svwZlTXbBXxzkHn89Pq8Vrtnx_eVs8LjNTCB6zymnMmEaKK8UpF1QXqjaGK0RqxuvK2sIiRokwXJi6Khl2NL3ALeLK1UYXc3Bz8G79-DXZEGU7Tn5IkRILQRgnuCoTdXegjB9D8NbJrW965XcSI7kvSKaC5L4gmewJvz1KVTCqc14Npgm_O4QLLNJRicuPWtVr39Rr-yf9P_EPqvN0vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992582176</pqid></control><display><type>article</type><title>Turbulence statistics in Couette flow at high Reynolds number</title><source>Cambridge University Press Journals Complete</source><creator>Pirozzoli, Sergio ; Bernardini, Matteo ; Orlandi, Paolo</creator><creatorcontrib>Pirozzoli, Sergio ; Bernardini, Matteo ; Orlandi, Paolo</creatorcontrib><description>We investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$
, where
$h$
is the channel half-height and
$\delta _v$
is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.529</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layer and shear turbulence ; Computational fluid dynamics ; Computer simulation ; Couette flow ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; High Reynolds number ; High-reynolds-number turbulence ; Physics ; Reynolds number ; Reynolds stress ; Rollers ; Shear stress ; Skin ; Skin friction ; Statistical methods ; Stress concentration ; Stress distribution ; Turbulence ; Turbulence simulation and modeling ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Velocity ; Velocity distribution</subject><ispartof>Journal of fluid mechanics, 2014-11, Vol.758, p.327-343</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-7fb155b0a8aa84894b3adcc8a02d58d7ee3e05429c89cd7651f45298e08afdcb3</citedby><cites>FETCH-LOGICAL-c398t-7fb155b0a8aa84894b3adcc8a02d58d7ee3e05429c89cd7651f45298e08afdcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014005291/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27933,27934,55637</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919542$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pirozzoli, Sergio</creatorcontrib><creatorcontrib>Bernardini, Matteo</creatorcontrib><creatorcontrib>Orlandi, Paolo</creatorcontrib><title>Turbulence statistics in Couette flow at high Reynolds number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$
, where
$h$
is the channel half-height and
$\delta _v$
is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region.</description><subject>Boundary layer</subject><subject>Boundary layer and shear turbulence</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Couette flow</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High Reynolds number</subject><subject>High-reynolds-number turbulence</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Reynolds stress</subject><subject>Rollers</subject><subject>Shear stress</subject><subject>Skin</subject><subject>Skin friction</subject><subject>Statistical methods</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEURYMoWKs7f0BA3DljkklmkoULKX5BQZC6DkkmaWeYj5pkkP57U1rEhau3Oe_c9y4A1xjlGOHqvnV9ThCmOSPiBMwwLUVWlZSdghlChGQYE3QOLkJoEcIFEtUMPKwmr6fODsbCEFVsQmxMgM0AF-NkY7TQdeM3VBFumvUGftjdMHZ1gMPUa-svwZlTXbBXxzkHn89Pq8Vrtnx_eVs8LjNTCB6zymnMmEaKK8UpF1QXqjaGK0RqxuvK2sIiRokwXJi6Khl2NL3ALeLK1UYXc3Bz8G79-DXZEGU7Tn5IkRILQRgnuCoTdXegjB9D8NbJrW965XcSI7kvSKaC5L4gmewJvz1KVTCqc14Npgm_O4QLLNJRicuPWtVr39Rr-yf9P_EPqvN0vQ</recordid><startdate>20141110</startdate><enddate>20141110</enddate><creator>Pirozzoli, Sergio</creator><creator>Bernardini, Matteo</creator><creator>Orlandi, Paolo</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20141110</creationdate><title>Turbulence statistics in Couette flow at high Reynolds number</title><author>Pirozzoli, Sergio ; Bernardini, Matteo ; Orlandi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-7fb155b0a8aa84894b3adcc8a02d58d7ee3e05429c89cd7651f45298e08afdcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary layer</topic><topic>Boundary layer and shear turbulence</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Couette flow</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High Reynolds number</topic><topic>High-reynolds-number turbulence</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Reynolds stress</topic><topic>Rollers</topic><topic>Shear stress</topic><topic>Skin</topic><topic>Skin friction</topic><topic>Statistical methods</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirozzoli, Sergio</creatorcontrib><creatorcontrib>Bernardini, Matteo</creatorcontrib><creatorcontrib>Orlandi, Paolo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirozzoli, Sergio</au><au>Bernardini, Matteo</au><au>Orlandi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence statistics in Couette flow at high Reynolds number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-11-10</date><risdate>2014</risdate><volume>758</volume><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$
, where
$h$
is the channel half-height and
$\delta _v$
is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.529</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2014-11, Vol.758, p.327-343 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1992582176 |
source | Cambridge University Press Journals Complete |
subjects | Boundary layer Boundary layer and shear turbulence Computational fluid dynamics Computer simulation Couette flow Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) High Reynolds number High-reynolds-number turbulence Physics Reynolds number Reynolds stress Rollers Shear stress Skin Skin friction Statistical methods Stress concentration Stress distribution Turbulence Turbulence simulation and modeling Turbulent flow Turbulent flows, convection, and heat transfer Velocity Velocity distribution |
title | Turbulence statistics in Couette flow at high Reynolds number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20statistics%20in%20Couette%20flow%20at%20high%20Reynolds%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Pirozzoli,%20Sergio&rft.date=2014-11-10&rft.volume=758&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.529&rft_dat=%3Cproquest_cross%3E1992582176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992582176&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_529&rfr_iscdi=true |