Differential evolution for sequencing and scheduling optimization
This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and...
Gespeichert in:
Veröffentlicht in: | Journal of heuristics 2006-12, Vol.12 (6), p.395-411 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 6 |
container_start_page | 395 |
container_title | Journal of heuristics |
container_volume | 12 |
creator | Nearchou, Andreas C. Omirou, Sotiris L. |
description | This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/10732-006-3750-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199249755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1161125871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cd0faf4ea7ddbeffb6122252f80c534ea4df56f927fb56e5e414e243b7619a013</originalsourceid><addsrcrecordid>eNotkEFPwzAMRiMEEmNw51hxD9hJ0zTHacBAmsQFzlHaJpCpa0rSosGvp2WcbH96sq1HyDXCLQLIOwTJGQUoKJcC6OGELFBIRhVX8nTqeYkUGcdzcpHSDgBUKfiCrO69czbabvCmzexXaMfBhy5zIWbJfo62q333npmuyVL9YZuxncfQD37vf8yMXpIzZ9pkr_7rkrw9Pryun-j2ZfO8Xm1pzSQMtG7AGZdbI5umss5VBTLGBHMl1IJPed44UTjFpKtEYYXNMbcs55UsUBlAviQ3x719DNNfadC7MMZuOqlRKZYrKcQEwRGqY0gpWqf76PcmfmsEPXvSf5705EnPnvSB_wL0RVws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199249755</pqid></control><display><type>article</type><title>Differential evolution for sequencing and scheduling optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nearchou, Andreas C. ; Omirou, Sotiris L.</creator><creatorcontrib>Nearchou, Andreas C. ; Omirou, Sotiris L.</creatorcontrib><description>This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1381-1231</identifier><identifier>EISSN: 1572-9397</identifier><identifier>DOI: 10.1007/10732-006-3750-x</identifier><language>eng</language><publisher>Boston: Springer Nature B.V</publisher><subject>Algorithms ; Benchmarks ; Heuristic ; Mutation ; Optimization ; Optimization algorithms ; Population ; Scheduling ; Sequential scheduling ; Stochastic models ; Studies ; Traveling salesman problem ; Variables</subject><ispartof>Journal of heuristics, 2006-12, Vol.12 (6), p.395-411</ispartof><rights>Springer Science + Business Media, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-cd0faf4ea7ddbeffb6122252f80c534ea4df56f927fb56e5e414e243b7619a013</citedby><cites>FETCH-LOGICAL-c270t-cd0faf4ea7ddbeffb6122252f80c534ea4df56f927fb56e5e414e243b7619a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nearchou, Andreas C.</creatorcontrib><creatorcontrib>Omirou, Sotiris L.</creatorcontrib><title>Differential evolution for sequencing and scheduling optimization</title><title>Journal of heuristics</title><description>This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Heuristic</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Scheduling</subject><subject>Sequential scheduling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Traveling salesman problem</subject><subject>Variables</subject><issn>1381-1231</issn><issn>1572-9397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFPwzAMRiMEEmNw51hxD9hJ0zTHacBAmsQFzlHaJpCpa0rSosGvp2WcbH96sq1HyDXCLQLIOwTJGQUoKJcC6OGELFBIRhVX8nTqeYkUGcdzcpHSDgBUKfiCrO69czbabvCmzexXaMfBhy5zIWbJfo62q333npmuyVL9YZuxncfQD37vf8yMXpIzZ9pkr_7rkrw9Pryun-j2ZfO8Xm1pzSQMtG7AGZdbI5umss5VBTLGBHMl1IJPed44UTjFpKtEYYXNMbcs55UsUBlAviQ3x719DNNfadC7MMZuOqlRKZYrKcQEwRGqY0gpWqf76PcmfmsEPXvSf5705EnPnvSB_wL0RVws</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Nearchou, Andreas C.</creator><creator>Omirou, Sotiris L.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200612</creationdate><title>Differential evolution for sequencing and scheduling optimization</title><author>Nearchou, Andreas C. ; Omirou, Sotiris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cd0faf4ea7ddbeffb6122252f80c534ea4df56f927fb56e5e414e243b7619a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Heuristic</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Scheduling</topic><topic>Sequential scheduling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Traveling salesman problem</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nearchou, Andreas C.</creatorcontrib><creatorcontrib>Omirou, Sotiris L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of heuristics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nearchou, Andreas C.</au><au>Omirou, Sotiris L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential evolution for sequencing and scheduling optimization</atitle><jtitle>Journal of heuristics</jtitle><date>2006-12</date><risdate>2006</risdate><volume>12</volume><issue>6</issue><spage>395</spage><epage>411</epage><pages>395-411</pages><issn>1381-1231</issn><eissn>1572-9397</eissn><abstract>This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE. [PUBLICATION ABSTRACT]</abstract><cop>Boston</cop><pub>Springer Nature B.V</pub><doi>10.1007/10732-006-3750-x</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-1231 |
ispartof | Journal of heuristics, 2006-12, Vol.12 (6), p.395-411 |
issn | 1381-1231 1572-9397 |
language | eng |
recordid | cdi_proquest_journals_199249755 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Benchmarks Heuristic Mutation Optimization Optimization algorithms Population Scheduling Sequential scheduling Stochastic models Studies Traveling salesman problem Variables |
title | Differential evolution for sequencing and scheduling optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20evolution%20for%20sequencing%20and%20scheduling%20optimization&rft.jtitle=Journal%20of%20heuristics&rft.au=Nearchou,%20Andreas%20C.&rft.date=2006-12&rft.volume=12&rft.issue=6&rft.spage=395&rft.epage=411&rft.pages=395-411&rft.issn=1381-1231&rft.eissn=1572-9397&rft_id=info:doi/10.1007/10732-006-3750-x&rft_dat=%3Cproquest_cross%3E1161125871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199249755&rft_id=info:pmid/&rfr_iscdi=true |