Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel
In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected l...
Gespeichert in:
Veröffentlicht in: | Transactions of the Indian Institute of Metals 2018-02, Vol.71 (2), p.361-372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 2 |
container_start_page | 361 |
container_title | Transactions of the Indian Institute of Metals |
container_volume | 71 |
creator | Kumar, Nilesh Kumar, Amit Gupta, Aman Gaikwad, Ashvin D. Khatirkar, Rajesh K. |
description | In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal. |
doi_str_mv | 10.1007/s12666-017-1167-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992347592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992347592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4DraB6TxyxL1SoMumiLy5DJJHXKOFOTGax_b-q4EMHNvQfueXAPAJcEXxOM5U0kVAiBMJGIECHR_ghMcC45IiLjx9-YIqoIPwVnMW4xZjllbALKhYlwNbSb2LsWzoKFL66p6nYDOw8ZEQWcDYdT3dcWLntTt42LMSHnGvhR969w_bSES0Yp5vB22DVu_5d2Dk68aaK7-NlTsL6_W80fUPG8eJzPCmRTTo8yZWSpGDbeVxhzK7xyXOZeloYaQhVXSmaVEJVznFvGGTVYWkclZkZWvmRTcDX67kL3PrjY6203hDZFapKnbzPJ05wCMrJs6GIMzutdqN9M-NQE60OVeqxSpyr1oUq9Txo6amLithsXfjn_K_oC8Vt1Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992347592</pqid></control><display><type>article</type><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><source>SpringerLink Journals</source><creator>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</creator><creatorcontrib>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</creatorcontrib><description>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</description><identifier>ISSN: 0972-2815</identifier><identifier>EISSN: 0975-1645</identifier><identifier>DOI: 10.1007/s12666-017-1167-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Arc heating ; Austenite ; Austenitic stainless steels ; Base metal ; Chemistry and Materials Science ; Chromium ; Corrosion and Coatings ; Dissimilar material joining ; Duplex stainless steels ; Ferrites ; Gas tungsten arc welding ; Heat affected zone ; Heat treating ; Intermetallic phases ; Iron ; Manganese ; Materials Science ; Metallic Materials ; Metals ; Microhardness ; Optical properties ; Precipitates ; Stainless steel ; Technical Paper ; Tensile properties ; Tribology ; Weld metal</subject><ispartof>Transactions of the Indian Institute of Metals, 2018-02, Vol.71 (2), p.361-372</ispartof><rights>The Indian Institute of Metals - IIM 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</citedby><cites>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</cites><orcidid>0000-0001-6421-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12666-017-1167-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12666-017-1167-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Nilesh</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Gaikwad, Ashvin D.</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><title>Transactions of the Indian Institute of Metals</title><addtitle>Trans Indian Inst Met</addtitle><description>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</description><subject>Arc heating</subject><subject>Austenite</subject><subject>Austenitic stainless steels</subject><subject>Base metal</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Corrosion and Coatings</subject><subject>Dissimilar material joining</subject><subject>Duplex stainless steels</subject><subject>Ferrites</subject><subject>Gas tungsten arc welding</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>Intermetallic phases</subject><subject>Iron</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals</subject><subject>Microhardness</subject><subject>Optical properties</subject><subject>Precipitates</subject><subject>Stainless steel</subject><subject>Technical Paper</subject><subject>Tensile properties</subject><subject>Tribology</subject><subject>Weld metal</subject><issn>0972-2815</issn><issn>0975-1645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4DraB6TxyxL1SoMumiLy5DJJHXKOFOTGax_b-q4EMHNvQfueXAPAJcEXxOM5U0kVAiBMJGIECHR_ghMcC45IiLjx9-YIqoIPwVnMW4xZjllbALKhYlwNbSb2LsWzoKFL66p6nYDOw8ZEQWcDYdT3dcWLntTt42LMSHnGvhR969w_bSES0Yp5vB22DVu_5d2Dk68aaK7-NlTsL6_W80fUPG8eJzPCmRTTo8yZWSpGDbeVxhzK7xyXOZeloYaQhVXSmaVEJVznFvGGTVYWkclZkZWvmRTcDX67kL3PrjY6203hDZFapKnbzPJ05wCMrJs6GIMzutdqN9M-NQE60OVeqxSpyr1oUq9Txo6amLithsXfjn_K_oC8Vt1Sw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Kumar, Nilesh</creator><creator>Kumar, Amit</creator><creator>Gupta, Aman</creator><creator>Gaikwad, Ashvin D.</creator><creator>Khatirkar, Rajesh K.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6421-9368</orcidid></search><sort><creationdate>20180201</creationdate><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><author>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arc heating</topic><topic>Austenite</topic><topic>Austenitic stainless steels</topic><topic>Base metal</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Corrosion and Coatings</topic><topic>Dissimilar material joining</topic><topic>Duplex stainless steels</topic><topic>Ferrites</topic><topic>Gas tungsten arc welding</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>Intermetallic phases</topic><topic>Iron</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals</topic><topic>Microhardness</topic><topic>Optical properties</topic><topic>Precipitates</topic><topic>Stainless steel</topic><topic>Technical Paper</topic><topic>Tensile properties</topic><topic>Tribology</topic><topic>Weld metal</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nilesh</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Gaikwad, Ashvin D.</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the Indian Institute of Metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nilesh</au><au>Kumar, Amit</au><au>Gupta, Aman</au><au>Gaikwad, Ashvin D.</au><au>Khatirkar, Rajesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</atitle><jtitle>Transactions of the Indian Institute of Metals</jtitle><stitle>Trans Indian Inst Met</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>71</volume><issue>2</issue><spage>361</spage><epage>372</epage><pages>361-372</pages><issn>0972-2815</issn><eissn>0975-1645</eissn><abstract>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12666-017-1167-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6421-9368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0972-2815 |
ispartof | Transactions of the Indian Institute of Metals, 2018-02, Vol.71 (2), p.361-372 |
issn | 0972-2815 0975-1645 |
language | eng |
recordid | cdi_proquest_journals_1992347592 |
source | SpringerLink Journals |
subjects | Arc heating Austenite Austenitic stainless steels Base metal Chemistry and Materials Science Chromium Corrosion and Coatings Dissimilar material joining Duplex stainless steels Ferrites Gas tungsten arc welding Heat affected zone Heat treating Intermetallic phases Iron Manganese Materials Science Metallic Materials Metals Microhardness Optical properties Precipitates Stainless steel Technical Paper Tensile properties Tribology Weld metal |
title | Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Tungsten%20Arc%20Welding%20of%20316L%20Austenitic%20Stainless%20Steel%20with%20UNS%20S32205%20Duplex%20Stainless%20Steel&rft.jtitle=Transactions%20of%20the%20Indian%20Institute%20of%20Metals&rft.au=Kumar,%20Nilesh&rft.date=2018-02-01&rft.volume=71&rft.issue=2&rft.spage=361&rft.epage=372&rft.pages=361-372&rft.issn=0972-2815&rft.eissn=0975-1645&rft_id=info:doi/10.1007/s12666-017-1167-x&rft_dat=%3Cproquest_cross%3E1992347592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992347592&rft_id=info:pmid/&rfr_iscdi=true |