Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel

In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Indian Institute of Metals 2018-02, Vol.71 (2), p.361-372
Hauptverfasser: Kumar, Nilesh, Kumar, Amit, Gupta, Aman, Gaikwad, Ashvin D., Khatirkar, Rajesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 2
container_start_page 361
container_title Transactions of the Indian Institute of Metals
container_volume 71
creator Kumar, Nilesh
Kumar, Amit
Gupta, Aman
Gaikwad, Ashvin D.
Khatirkar, Rajesh K.
description In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.
doi_str_mv 10.1007/s12666-017-1167-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992347592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992347592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4DraB6TxyxL1SoMumiLy5DJJHXKOFOTGax_b-q4EMHNvQfueXAPAJcEXxOM5U0kVAiBMJGIECHR_ghMcC45IiLjx9-YIqoIPwVnMW4xZjllbALKhYlwNbSb2LsWzoKFL66p6nYDOw8ZEQWcDYdT3dcWLntTt42LMSHnGvhR969w_bSES0Yp5vB22DVu_5d2Dk68aaK7-NlTsL6_W80fUPG8eJzPCmRTTo8yZWSpGDbeVxhzK7xyXOZeloYaQhVXSmaVEJVznFvGGTVYWkclZkZWvmRTcDX67kL3PrjY6203hDZFapKnbzPJ05wCMrJs6GIMzutdqN9M-NQE60OVeqxSpyr1oUq9Txo6amLithsXfjn_K_oC8Vt1Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992347592</pqid></control><display><type>article</type><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><source>SpringerLink Journals</source><creator>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</creator><creatorcontrib>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</creatorcontrib><description>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</description><identifier>ISSN: 0972-2815</identifier><identifier>EISSN: 0975-1645</identifier><identifier>DOI: 10.1007/s12666-017-1167-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Arc heating ; Austenite ; Austenitic stainless steels ; Base metal ; Chemistry and Materials Science ; Chromium ; Corrosion and Coatings ; Dissimilar material joining ; Duplex stainless steels ; Ferrites ; Gas tungsten arc welding ; Heat affected zone ; Heat treating ; Intermetallic phases ; Iron ; Manganese ; Materials Science ; Metallic Materials ; Metals ; Microhardness ; Optical properties ; Precipitates ; Stainless steel ; Technical Paper ; Tensile properties ; Tribology ; Weld metal</subject><ispartof>Transactions of the Indian Institute of Metals, 2018-02, Vol.71 (2), p.361-372</ispartof><rights>The Indian Institute of Metals - IIM 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</citedby><cites>FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</cites><orcidid>0000-0001-6421-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12666-017-1167-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12666-017-1167-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Nilesh</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Gaikwad, Ashvin D.</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><title>Transactions of the Indian Institute of Metals</title><addtitle>Trans Indian Inst Met</addtitle><description>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</description><subject>Arc heating</subject><subject>Austenite</subject><subject>Austenitic stainless steels</subject><subject>Base metal</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Corrosion and Coatings</subject><subject>Dissimilar material joining</subject><subject>Duplex stainless steels</subject><subject>Ferrites</subject><subject>Gas tungsten arc welding</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>Intermetallic phases</subject><subject>Iron</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals</subject><subject>Microhardness</subject><subject>Optical properties</subject><subject>Precipitates</subject><subject>Stainless steel</subject><subject>Technical Paper</subject><subject>Tensile properties</subject><subject>Tribology</subject><subject>Weld metal</subject><issn>0972-2815</issn><issn>0975-1645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4DraB6TxyxL1SoMumiLy5DJJHXKOFOTGax_b-q4EMHNvQfueXAPAJcEXxOM5U0kVAiBMJGIECHR_ghMcC45IiLjx9-YIqoIPwVnMW4xZjllbALKhYlwNbSb2LsWzoKFL66p6nYDOw8ZEQWcDYdT3dcWLntTt42LMSHnGvhR969w_bSES0Yp5vB22DVu_5d2Dk68aaK7-NlTsL6_W80fUPG8eJzPCmRTTo8yZWSpGDbeVxhzK7xyXOZeloYaQhVXSmaVEJVznFvGGTVYWkclZkZWvmRTcDX67kL3PrjY6203hDZFapKnbzPJ05wCMrJs6GIMzutdqN9M-NQE60OVeqxSpyr1oUq9Txo6amLithsXfjn_K_oC8Vt1Sw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Kumar, Nilesh</creator><creator>Kumar, Amit</creator><creator>Gupta, Aman</creator><creator>Gaikwad, Ashvin D.</creator><creator>Khatirkar, Rajesh K.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6421-9368</orcidid></search><sort><creationdate>20180201</creationdate><title>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</title><author>Kumar, Nilesh ; Kumar, Amit ; Gupta, Aman ; Gaikwad, Ashvin D. ; Khatirkar, Rajesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-48a7b830affd005c6f8e579f7ba2a12858874d66dee55c3532a07ce2703a7dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arc heating</topic><topic>Austenite</topic><topic>Austenitic stainless steels</topic><topic>Base metal</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Corrosion and Coatings</topic><topic>Dissimilar material joining</topic><topic>Duplex stainless steels</topic><topic>Ferrites</topic><topic>Gas tungsten arc welding</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>Intermetallic phases</topic><topic>Iron</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals</topic><topic>Microhardness</topic><topic>Optical properties</topic><topic>Precipitates</topic><topic>Stainless steel</topic><topic>Technical Paper</topic><topic>Tensile properties</topic><topic>Tribology</topic><topic>Weld metal</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nilesh</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Gupta, Aman</creatorcontrib><creatorcontrib>Gaikwad, Ashvin D.</creatorcontrib><creatorcontrib>Khatirkar, Rajesh K.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the Indian Institute of Metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nilesh</au><au>Kumar, Amit</au><au>Gupta, Aman</au><au>Gaikwad, Ashvin D.</au><au>Khatirkar, Rajesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel</atitle><jtitle>Transactions of the Indian Institute of Metals</jtitle><stitle>Trans Indian Inst Met</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>71</volume><issue>2</issue><spage>361</spage><epage>372</epage><pages>361-372</pages><issn>0972-2815</issn><eissn>0975-1645</eissn><abstract>In the present work, dissimilar welding between UNS S32205 duplex stainless steel (DSS) and 316L austenitic stainless steel (ASS) was performed by using gas tungsten arc welding and ER2209 filler at two different heat inputs (0.52 and 0.98 kJ/mm). Microstructures were characterized using reflected light optical microscope and scanning electron microscope. Micro-hardness and tensile properties were measured across the weld for both the heat inputs. The microstructure of the welded region was primarily austenitic (for both heat inputs) with Widmanstätten morphology. The grain size of the heat affected zone on DSS side was very large (~200 µm) for the high heat input sample with the presence of partially transformed austenite and acicular austenite. The precipitation of intermetallic phases and carbides was not observed for both the heat inputs. The proportion of ferrite in the weld metal (as measured by feritscope) was higher for the high heat input sample than the low heat input sample. During the tensile test, fracture occurred in 316L ASS base metal (because of its lower strength) in ductile manner. For high heat input welds, the impact tested sample showed the presence of fine spherical precipitates rich in Cr, Mn and Fe in the fracture surface of weld metal.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12666-017-1167-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6421-9368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0972-2815
ispartof Transactions of the Indian Institute of Metals, 2018-02, Vol.71 (2), p.361-372
issn 0972-2815
0975-1645
language eng
recordid cdi_proquest_journals_1992347592
source SpringerLink Journals
subjects Arc heating
Austenite
Austenitic stainless steels
Base metal
Chemistry and Materials Science
Chromium
Corrosion and Coatings
Dissimilar material joining
Duplex stainless steels
Ferrites
Gas tungsten arc welding
Heat affected zone
Heat treating
Intermetallic phases
Iron
Manganese
Materials Science
Metallic Materials
Metals
Microhardness
Optical properties
Precipitates
Stainless steel
Technical Paper
Tensile properties
Tribology
Weld metal
title Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Tungsten%20Arc%20Welding%20of%20316L%20Austenitic%20Stainless%20Steel%20with%20UNS%20S32205%20Duplex%20Stainless%20Steel&rft.jtitle=Transactions%20of%20the%20Indian%20Institute%20of%20Metals&rft.au=Kumar,%20Nilesh&rft.date=2018-02-01&rft.volume=71&rft.issue=2&rft.spage=361&rft.epage=372&rft.pages=361-372&rft.issn=0972-2815&rft.eissn=0975-1645&rft_id=info:doi/10.1007/s12666-017-1167-x&rft_dat=%3Cproquest_cross%3E1992347592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992347592&rft_id=info:pmid/&rfr_iscdi=true