On the character of certain tilting modules

Let G be a semisimple group over an algebraically closed field of characteristic p 〉 0. We give a(partly conjectural) closed formula for the character of many indecomposable tilting rational G-modules assuming that p is large.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2018-02, Vol.61 (2), p.295-298
Hauptverfasser: Lusztig, George, Williamson, Geordie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 2
container_start_page 295
container_title Science China. Mathematics
container_volume 61
creator Lusztig, George
Williamson, Geordie
description Let G be a semisimple group over an algebraically closed field of characteristic p 〉 0. We give a(partly conjectural) closed formula for the character of many indecomposable tilting rational G-modules assuming that p is large.
doi_str_mv 10.1007/s11425-017-9162-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992347353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674675013</cqvip_id><sourcerecordid>1992347353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-dbd8bc0eede29afa3ca632419de264e05b57a2473809a27e759d5f6a0e6334a93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGofwN2gS4kmOblMllK8QaEbXYdM5kw7pZ1pk-nCtzdlirgyi5OE81_gI-SWs0fOmHlKnEuhKOOGWq4FtRdkwkttaR7iMr-1kdSIEq7JLKUNywcskwYm5GHZFcMai7D20YcBY9E3RcA4-DYv2u3Qdqti19fHLaYbctX4bcLZ-Z6Sr9eXz_k7XSzfPubPCxpAwkDrqi6rwBBrFNY3HoLXICS3-a8lMlUp40VuL5n1wqBRtlaN9gw1gPQWpuR-zN3H_nDENLhNf4xdrnTcWgHZqiCr-KgKsU8pYuP2sd35-O04cycsbsTiMhZ3wuJOyWL0pKztVhj_JP9jujsXrftudci-36bMVRvFOMAPt_pusw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992347353</pqid></control><display><type>article</type><title>On the character of certain tilting modules</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lusztig, George ; Williamson, Geordie</creator><creatorcontrib>Lusztig, George ; Williamson, Geordie</creatorcontrib><description>Let G be a semisimple group over an algebraically closed field of characteristic p 〉 0. We give a(partly conjectural) closed formula for the character of many indecomposable tilting rational G-modules assuming that p is large.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-017-9162-9</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics ; Modules ; 特性;模块;代数学</subject><ispartof>Science China. Mathematics, 2018-02, Vol.61 (2), p.295-298</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-dbd8bc0eede29afa3ca632419de264e05b57a2473809a27e759d5f6a0e6334a93</citedby><cites>FETCH-LOGICAL-c343t-dbd8bc0eede29afa3ca632419de264e05b57a2473809a27e759d5f6a0e6334a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-017-9162-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-017-9162-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lusztig, George</creatorcontrib><creatorcontrib>Williamson, Geordie</creatorcontrib><title>On the character of certain tilting modules</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let G be a semisimple group over an algebraically closed field of characteristic p 〉 0. We give a(partly conjectural) closed formula for the character of many indecomposable tilting rational G-modules assuming that p is large.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>特性;模块;代数学</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWGofwN2gS4kmOblMllK8QaEbXYdM5kw7pZ1pk-nCtzdlirgyi5OE81_gI-SWs0fOmHlKnEuhKOOGWq4FtRdkwkttaR7iMr-1kdSIEq7JLKUNywcskwYm5GHZFcMai7D20YcBY9E3RcA4-DYv2u3Qdqti19fHLaYbctX4bcLZ-Z6Sr9eXz_k7XSzfPubPCxpAwkDrqi6rwBBrFNY3HoLXICS3-a8lMlUp40VuL5n1wqBRtlaN9gw1gPQWpuR-zN3H_nDENLhNf4xdrnTcWgHZqiCr-KgKsU8pYuP2sd35-O04cycsbsTiMhZ3wuJOyWL0pKztVhj_JP9jujsXrftudci-36bMVRvFOMAPt_pusw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Lusztig, George</creator><creator>Williamson, Geordie</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>On the character of certain tilting modules</title><author>Lusztig, George ; Williamson, Geordie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-dbd8bc0eede29afa3ca632419de264e05b57a2473809a27e759d5f6a0e6334a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>特性;模块;代数学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lusztig, George</creatorcontrib><creatorcontrib>Williamson, Geordie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lusztig, George</au><au>Williamson, Geordie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the character of certain tilting modules</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>61</volume><issue>2</issue><spage>295</spage><epage>298</epage><pages>295-298</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let G be a semisimple group over an algebraically closed field of characteristic p 〉 0. We give a(partly conjectural) closed formula for the character of many indecomposable tilting rational G-modules assuming that p is large.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-017-9162-9</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2018-02, Vol.61 (2), p.295-298
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_1992347353
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematics
Mathematics and Statistics
Modules
特性
模块
代数学
title On the character of certain tilting modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20character%20of%20certain%20tilting%20modules&rft.jtitle=Science%20China.%20Mathematics&rft.au=Lusztig,%20George&rft.date=2018-02-01&rft.volume=61&rft.issue=2&rft.spage=295&rft.epage=298&rft.pages=295-298&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-017-9162-9&rft_dat=%3Cproquest_cross%3E1992347353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992347353&rft_id=info:pmid/&rft_cqvip_id=674675013&rfr_iscdi=true