Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals

Let I be a monomial ideal in a polynomial ring R = k [ x 1 , … , x r ] . In this paper, we give an upper bound on dstab ¯ ( I ) in terms of r and the maximal generating degree d ( I ) of I such that depth R / I n ¯ is constant for all n ⩾ dstab ¯ ( I ) . As an application, we classify the class of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2018-03, Vol.43 (1), p.67-81
Hauptverfasser: Hoa, Le Tuan, Trung, Tran Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 67
container_title Acta mathematica vietnamica
container_volume 43
creator Hoa, Le Tuan
Trung, Tran Nam
description Let I be a monomial ideal in a polynomial ring R = k [ x 1 , … , x r ] . In this paper, we give an upper bound on dstab ¯ ( I ) in terms of r and the maximal generating degree d ( I ) of I such that depth R / I n ¯ is constant for all n ⩾ dstab ¯ ( I ) . As an application, we classify the class of monomial ideals I such that I n ¯ is Cohen-Macaulay for some integer n ≫ 0.
doi_str_mv 10.1007/s40306-017-0225-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992347234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992347234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f86e91e78270fcab5e574e267d3898a3c9b7258d65016e8d4ab05e5e1c5b44e33</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBUvsDvAU8R2df2c1R4qvQoqCePCybZNJG0mzdTZD-e7etBy8ehm-Y7zHwEXJJ4ZoCqJsggEOWAlUpMCZTOCETxqlMBRXilEyASRp3Lc7JLIS2BMpVBkrLCfl4HWzZdu2wS1yT3OF2WCe2r5PCrbFPl7ayY2d3PYaw5-f9gCtvu6ToXBg9Ho4v7hv9YVu63m3aSM9rtF24IGdNBJz94pS8P9y_FU_p4vlxXtwu0orTbEgbnWFOUWmmoKlsKVEqgSxTNde5trzKS8WkrjMJNENdC1tC1CCtZCkEcj4lV8fcrXdfI4bBfLrR9_GloXnOuFBxoooeVZV3IXhszNa3G-t3hoLZ12iONZpYo9nXaCB62NETorZfof-T_K_pB-TRdDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992347234</pqid></control><display><type>article</type><title>Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals</title><source>Springer Nature - Complete Springer Journals</source><creator>Hoa, Le Tuan ; Trung, Tran Nam</creator><creatorcontrib>Hoa, Le Tuan ; Trung, Tran Nam</creatorcontrib><description>Let I be a monomial ideal in a polynomial ring R = k [ x 1 , … , x r ] . In this paper, we give an upper bound on dstab ¯ ( I ) in terms of r and the maximal generating degree d ( I ) of I such that depth R / I n ¯ is constant for all n ⩾ dstab ¯ ( I ) . As an application, we classify the class of monomial ideals I such that I n ¯ is Cohen-Macaulay for some integer n ≫ 0.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-017-0225-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Closures ; Mathematics ; Mathematics and Statistics ; Upper bounds</subject><ispartof>Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.67-81</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f86e91e78270fcab5e574e267d3898a3c9b7258d65016e8d4ab05e5e1c5b44e33</citedby><cites>FETCH-LOGICAL-c316t-f86e91e78270fcab5e574e267d3898a3c9b7258d65016e8d4ab05e5e1c5b44e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40306-017-0225-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40306-017-0225-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hoa, Le Tuan</creatorcontrib><creatorcontrib>Trung, Tran Nam</creatorcontrib><title>Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>Let I be a monomial ideal in a polynomial ring R = k [ x 1 , … , x r ] . In this paper, we give an upper bound on dstab ¯ ( I ) in terms of r and the maximal generating degree d ( I ) of I such that depth R / I n ¯ is constant for all n ⩾ dstab ¯ ( I ) . As an application, we classify the class of monomial ideals I such that I n ¯ is Cohen-Macaulay for some integer n ≫ 0.</description><subject>Closures</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Upper bounds</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBUvsDvAU8R2df2c1R4qvQoqCePCybZNJG0mzdTZD-e7etBy8ehm-Y7zHwEXJJ4ZoCqJsggEOWAlUpMCZTOCETxqlMBRXilEyASRp3Lc7JLIS2BMpVBkrLCfl4HWzZdu2wS1yT3OF2WCe2r5PCrbFPl7ayY2d3PYaw5-f9gCtvu6ToXBg9Ho4v7hv9YVu63m3aSM9rtF24IGdNBJz94pS8P9y_FU_p4vlxXtwu0orTbEgbnWFOUWmmoKlsKVEqgSxTNde5trzKS8WkrjMJNENdC1tC1CCtZCkEcj4lV8fcrXdfI4bBfLrR9_GloXnOuFBxoooeVZV3IXhszNa3G-t3hoLZ12iONZpYo9nXaCB62NETorZfof-T_K_pB-TRdDA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Hoa, Le Tuan</creator><creator>Trung, Tran Nam</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals</title><author>Hoa, Le Tuan ; Trung, Tran Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f86e91e78270fcab5e574e267d3898a3c9b7258d65016e8d4ab05e5e1c5b44e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Closures</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoa, Le Tuan</creatorcontrib><creatorcontrib>Trung, Tran Nam</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoa, Le Tuan</au><au>Trung, Tran Nam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>67</spage><epage>81</epage><pages>67-81</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>Let I be a monomial ideal in a polynomial ring R = k [ x 1 , … , x r ] . In this paper, we give an upper bound on dstab ¯ ( I ) in terms of r and the maximal generating degree d ( I ) of I such that depth R / I n ¯ is constant for all n ⩾ dstab ¯ ( I ) . As an application, we classify the class of monomial ideals I such that I n ¯ is Cohen-Macaulay for some integer n ≫ 0.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40306-017-0225-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0251-4184
ispartof Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.67-81
issn 0251-4184
2315-4144
language eng
recordid cdi_proquest_journals_1992347234
source Springer Nature - Complete Springer Journals
subjects Closures
Mathematics
Mathematics and Statistics
Upper bounds
title Stability of Depth and Cohen-Macaulayness of Integral Closures of Powers of Monomial Ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Depth%20and%20Cohen-Macaulayness%20of%20Integral%20Closures%20of%20Powers%20of%20Monomial%20Ideals&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Hoa,%20Le%20Tuan&rft.date=2018-03-01&rft.volume=43&rft.issue=1&rft.spage=67&rft.epage=81&rft.pages=67-81&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-017-0225-0&rft_dat=%3Cproquest_cross%3E1992347234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992347234&rft_id=info:pmid/&rfr_iscdi=true