On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces

We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2018-03, Vol.43 (1), p.155-174
Hauptverfasser: Dong, Vu Van, Tam, Nguyen Nang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 1
container_start_page 155
container_title Acta mathematica vietnamica
container_volume 43
creator Dong, Vu Van
Tam, Nguyen Nang
description We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.
doi_str_mv 10.1007/s40306-017-0237-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992346944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992346944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOOZ-gLeA52rSpE1zlDGdMJwyxWNI06810iYzaWX-ezvqwYun7z28z_vBg9AlJdeUEHETOWEkTwgVCUmZSOQJmqWMZgmnnJ-iGUkzOuaCn6NFjLYklImciCKbobetw_074J1vh956h1cHG3twBrCv8aN3xrsvOODnQVdB99bgp-CboLvOuuaYyxa6iK3Da9uWEHq822sD8QKd1bqNsPi9c_R6t3pZrpPN9v5hebtJDKN5n1QFzXQJmoIwRsuKF1LLjDOTG8JqIVIOFa1A85IUkhvGs4KznGYArCwF5GyOrqbdffCfA8ReffghuPGlolKmjOeS87FFp5YJPsYAtdoH2-nwrShRR4VqUqhGheqoUMmRSScmjl3XQPiz_C_0A9huc-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992346944</pqid></control><display><type>article</type><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Vu Van ; Tam, Nguyen Nang</creator><creatorcontrib>Dong, Vu Van ; Tam, Nguyen Nang</creatorcontrib><description>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-017-0237-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Convexity ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Quadratic programming</subject><ispartof>Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.155-174</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</citedby><cites>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</cites><orcidid>0000-0002-3842-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40306-017-0237-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40306-017-0237-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dong, Vu Van</creatorcontrib><creatorcontrib>Tam, Nguyen Nang</creatorcontrib><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</description><subject>Convexity</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quadratic programming</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOOZ-gLeA52rSpE1zlDGdMJwyxWNI06810iYzaWX-ezvqwYun7z28z_vBg9AlJdeUEHETOWEkTwgVCUmZSOQJmqWMZgmnnJ-iGUkzOuaCn6NFjLYklImciCKbobetw_074J1vh956h1cHG3twBrCv8aN3xrsvOODnQVdB99bgp-CboLvOuuaYyxa6iK3Da9uWEHq822sD8QKd1bqNsPi9c_R6t3pZrpPN9v5hebtJDKN5n1QFzXQJmoIwRsuKF1LLjDOTG8JqIVIOFa1A85IUkhvGs4KznGYArCwF5GyOrqbdffCfA8ReffghuPGlolKmjOeS87FFp5YJPsYAtdoH2-nwrShRR4VqUqhGheqoUMmRSScmjl3XQPiz_C_0A9huc-o</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Dong, Vu Van</creator><creator>Tam, Nguyen Nang</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3842-9940</orcidid></search><sort><creationdate>20180301</creationdate><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><author>Dong, Vu Van ; Tam, Nguyen Nang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convexity</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Vu Van</creatorcontrib><creatorcontrib>Tam, Nguyen Nang</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Vu Van</au><au>Tam, Nguyen Nang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>155</spage><epage>174</epage><pages>155-174</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40306-017-0237-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3842-9940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0251-4184
ispartof Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.155-174
issn 0251-4184
2315-4144
language eng
recordid cdi_proquest_journals_1992346944
source SpringerLink Journals - AutoHoldings
subjects Convexity
Hilbert space
Mathematics
Mathematics and Statistics
Quadratic programming
title On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Solution%20Existence%20of%20Nonconvex%20Quadratic%20Programming%20Problems%20in%20Hilbert%20Spaces&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Dong,%20Vu%20Van&rft.date=2018-03-01&rft.volume=43&rft.issue=1&rft.spage=155&rft.epage=174&rft.pages=155-174&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-017-0237-9&rft_dat=%3Cproquest_cross%3E1992346944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992346944&rft_id=info:pmid/&rfr_iscdi=true