On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces
We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of co...
Gespeichert in:
Veröffentlicht in: | Acta mathematica vietnamica 2018-03, Vol.43 (1), p.155-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Acta mathematica vietnamica |
container_volume | 43 |
creator | Dong, Vu Van Tam, Nguyen Nang |
description | We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces. |
doi_str_mv | 10.1007/s40306-017-0237-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992346944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992346944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOOZ-gLeA52rSpE1zlDGdMJwyxWNI06810iYzaWX-ezvqwYun7z28z_vBg9AlJdeUEHETOWEkTwgVCUmZSOQJmqWMZgmnnJ-iGUkzOuaCn6NFjLYklImciCKbobetw_074J1vh956h1cHG3twBrCv8aN3xrsvOODnQVdB99bgp-CboLvOuuaYyxa6iK3Da9uWEHq822sD8QKd1bqNsPi9c_R6t3pZrpPN9v5hebtJDKN5n1QFzXQJmoIwRsuKF1LLjDOTG8JqIVIOFa1A85IUkhvGs4KznGYArCwF5GyOrqbdffCfA8ReffghuPGlolKmjOeS87FFp5YJPsYAtdoH2-nwrShRR4VqUqhGheqoUMmRSScmjl3XQPiz_C_0A9huc-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992346944</pqid></control><display><type>article</type><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Vu Van ; Tam, Nguyen Nang</creator><creatorcontrib>Dong, Vu Van ; Tam, Nguyen Nang</creatorcontrib><description>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-017-0237-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Convexity ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Quadratic programming</subject><ispartof>Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.155-174</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</citedby><cites>FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</cites><orcidid>0000-0002-3842-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40306-017-0237-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40306-017-0237-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dong, Vu Van</creatorcontrib><creatorcontrib>Tam, Nguyen Nang</creatorcontrib><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</description><subject>Convexity</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quadratic programming</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOOZ-gLeA52rSpE1zlDGdMJwyxWNI06810iYzaWX-ezvqwYun7z28z_vBg9AlJdeUEHETOWEkTwgVCUmZSOQJmqWMZgmnnJ-iGUkzOuaCn6NFjLYklImciCKbobetw_074J1vh956h1cHG3twBrCv8aN3xrsvOODnQVdB99bgp-CboLvOuuaYyxa6iK3Da9uWEHq822sD8QKd1bqNsPi9c_R6t3pZrpPN9v5hebtJDKN5n1QFzXQJmoIwRsuKF1LLjDOTG8JqIVIOFa1A85IUkhvGs4KznGYArCwF5GyOrqbdffCfA8ReffghuPGlolKmjOeS87FFp5YJPsYAtdoH2-nwrShRR4VqUqhGheqoUMmRSScmjl3XQPiz_C_0A9huc-o</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Dong, Vu Van</creator><creator>Tam, Nguyen Nang</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3842-9940</orcidid></search><sort><creationdate>20180301</creationdate><title>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</title><author>Dong, Vu Van ; Tam, Nguyen Nang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d815abea1e7cca9d489a9543c6c03f7724ed1dea4b0894c345843615ee3bb7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convexity</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Vu Van</creatorcontrib><creatorcontrib>Tam, Nguyen Nang</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Vu Van</au><au>Tam, Nguyen Nang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>155</spage><epage>174</epage><pages>155-174</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>We propose conditions for the existence of solutions for nonconvex quadratic programming problems whose constraint set is defined by finitely many convex linear-quadratic inequalities in Hilbert spaces. In order to obtain our results, we use either properties of the Legendre form or properties of compact operators with closed range. The results are established without requesting the convexity of the objective function or the compactness of the constraint set. As a special case, we obtain some on the existence of solutions results for the quadratic programming problems under linear constraints in Hilbert spaces.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40306-017-0237-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3842-9940</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0251-4184 |
ispartof | Acta mathematica vietnamica, 2018-03, Vol.43 (1), p.155-174 |
issn | 0251-4184 2315-4144 |
language | eng |
recordid | cdi_proquest_journals_1992346944 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convexity Hilbert space Mathematics Mathematics and Statistics Quadratic programming |
title | On the Solution Existence of Nonconvex Quadratic Programming Problems in Hilbert Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Solution%20Existence%20of%20Nonconvex%20Quadratic%20Programming%20Problems%20in%20Hilbert%20Spaces&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Dong,%20Vu%20Van&rft.date=2018-03-01&rft.volume=43&rft.issue=1&rft.spage=155&rft.epage=174&rft.pages=155-174&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-017-0237-9&rft_dat=%3Cproquest_cross%3E1992346944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992346944&rft_id=info:pmid/&rfr_iscdi=true |