A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit

Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2018-02, Vol.53 (2), p.470-483
Hauptverfasser: Verbeke, Marijn, Rombouts, Pieter, Ramon, Hannes, Moeneclaey, Bart, Xin Yin, Bauwelinck, Johan, Torfs, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 2
container_start_page 470
container_title IEEE journal of solid-state circuits
container_volume 53
creator Verbeke, Marijn
Rombouts, Pieter
Ramon, Hannes
Moeneclaey, Bart
Xin Yin
Bauwelinck, Johan
Torfs, Guy
description Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.
doi_str_mv 10.1109/JSSC.2017.2755690
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1992117830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8060975</ieee_id><sourcerecordid>1992117830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeGu6nHw0yeWoOh2DwTbQu5C2yeis60w7Yf_ejg2vDi8873vgQegeaAJAzWi6XGYJo6ASpqRMDb1AA5BSE1D88xINKAVNDKP0Gt207aaPQmgYoPkYQ6LJbjrKnzCwRBImySQftfijKj1euO3a43Fdk-dqXXWuxlndFF_YbUv87DqHF75ofn084KyKxb7qbtFVcHXr7853iFavL6vsjczmk_dsPCMF52lHjCk1aFEYYRQLwXkBLPCSG-qVoErnkLLgAjjmQq5TwWgwaRAgc51TSPkQPZ5md7H52fu2s5tmH7f9RwvGMAClOe0pOFFFbNo2-mB3sfp28WCB2qM2e9Rmj9rsWVvfeTh1Ku_9P69pSo2S_A_oRGPF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992117830</pqid></control><display><type>article</type><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><source>IEEE Electronic Library Online</source><creator>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</creator><creatorcontrib>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</creatorcontrib><description>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2755690</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>All-digital clock and data recovery (AD-CDR) ; Analog circuits ; CDR circuits ; Clock recovery ; Clocks ; Computer architecture ; Data recovery ; Detectors ; digital controlled oscillator (DCO) ; digital loop filter (DLF) ; Image edge detection ; Inverse Alexander phase detector (PD) ; Oscillators ; Phase detectors ; Phase frequency detector ; Power consumption ; Power demand ; Receivers ; subsampling ; Synthesis</subject><ispartof>IEEE journal of solid-state circuits, 2018-02, Vol.53 (2), p.470-483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</citedby><cites>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</cites><orcidid>0000-0001-5878-706X ; 0000-0002-2986-7017 ; 0000-0002-3731-9731 ; 0000-0002-9444-6235 ; 0000-0002-9672-6652 ; 0000-0003-1817-5370 ; 0000-0001-5254-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8060975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8060975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verbeke, Marijn</creatorcontrib><creatorcontrib>Rombouts, Pieter</creatorcontrib><creatorcontrib>Ramon, Hannes</creatorcontrib><creatorcontrib>Moeneclaey, Bart</creatorcontrib><creatorcontrib>Xin Yin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</description><subject>All-digital clock and data recovery (AD-CDR)</subject><subject>Analog circuits</subject><subject>CDR circuits</subject><subject>Clock recovery</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>Data recovery</subject><subject>Detectors</subject><subject>digital controlled oscillator (DCO)</subject><subject>digital loop filter (DLF)</subject><subject>Image edge detection</subject><subject>Inverse Alexander phase detector (PD)</subject><subject>Oscillators</subject><subject>Phase detectors</subject><subject>Phase frequency detector</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Receivers</subject><subject>subsampling</subject><subject>Synthesis</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeGu6nHw0yeWoOh2DwTbQu5C2yeis60w7Yf_ejg2vDi8873vgQegeaAJAzWi6XGYJo6ASpqRMDb1AA5BSE1D88xINKAVNDKP0Gt207aaPQmgYoPkYQ6LJbjrKnzCwRBImySQftfijKj1euO3a43Fdk-dqXXWuxlndFF_YbUv87DqHF75ofn084KyKxb7qbtFVcHXr7853iFavL6vsjczmk_dsPCMF52lHjCk1aFEYYRQLwXkBLPCSG-qVoErnkLLgAjjmQq5TwWgwaRAgc51TSPkQPZ5md7H52fu2s5tmH7f9RwvGMAClOe0pOFFFbNo2-mB3sfp28WCB2qM2e9Rmj9rsWVvfeTh1Ku_9P69pSo2S_A_oRGPF</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Verbeke, Marijn</creator><creator>Rombouts, Pieter</creator><creator>Ramon, Hannes</creator><creator>Moeneclaey, Bart</creator><creator>Xin Yin</creator><creator>Bauwelinck, Johan</creator><creator>Torfs, Guy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5878-706X</orcidid><orcidid>https://orcid.org/0000-0002-2986-7017</orcidid><orcidid>https://orcid.org/0000-0002-3731-9731</orcidid><orcidid>https://orcid.org/0000-0002-9444-6235</orcidid><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid></search><sort><creationdate>20180201</creationdate><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><author>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>All-digital clock and data recovery (AD-CDR)</topic><topic>Analog circuits</topic><topic>CDR circuits</topic><topic>Clock recovery</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>Data recovery</topic><topic>Detectors</topic><topic>digital controlled oscillator (DCO)</topic><topic>digital loop filter (DLF)</topic><topic>Image edge detection</topic><topic>Inverse Alexander phase detector (PD)</topic><topic>Oscillators</topic><topic>Phase detectors</topic><topic>Phase frequency detector</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Receivers</topic><topic>subsampling</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeke, Marijn</creatorcontrib><creatorcontrib>Rombouts, Pieter</creatorcontrib><creatorcontrib>Ramon, Hannes</creatorcontrib><creatorcontrib>Moeneclaey, Bart</creatorcontrib><creatorcontrib>Xin Yin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verbeke, Marijn</au><au>Rombouts, Pieter</au><au>Ramon, Hannes</au><au>Moeneclaey, Bart</au><au>Xin Yin</au><au>Bauwelinck, Johan</au><au>Torfs, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2755690</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5878-706X</orcidid><orcidid>https://orcid.org/0000-0002-2986-7017</orcidid><orcidid>https://orcid.org/0000-0002-3731-9731</orcidid><orcidid>https://orcid.org/0000-0002-9444-6235</orcidid><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2018-02, Vol.53 (2), p.470-483
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_1992117830
source IEEE Electronic Library Online
subjects All-digital clock and data recovery (AD-CDR)
Analog circuits
CDR circuits
Clock recovery
Clocks
Computer architecture
Data recovery
Detectors
digital controlled oscillator (DCO)
digital loop filter (DLF)
Image edge detection
Inverse Alexander phase detector (PD)
Oscillators
Phase detectors
Phase frequency detector
Power consumption
Power demand
Receivers
subsampling
Synthesis
title A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.8-pJ/b,%2012.5-25-Gb/s%20Wide%20Range%20All-Digital%20Clock%20and%20Data%20Recovery%20Circuit&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Verbeke,%20Marijn&rft.date=2018-02-01&rft.volume=53&rft.issue=2&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2755690&rft_dat=%3Cproquest_RIE%3E1992117830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992117830&rft_id=info:pmid/&rft_ieee_id=8060975&rfr_iscdi=true