A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit
Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscil...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2018-02, Vol.53 (2), p.470-483 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | 2 |
container_start_page | 470 |
container_title | IEEE journal of solid-state circuits |
container_volume | 53 |
creator | Verbeke, Marijn Rombouts, Pieter Ramon, Hannes Moeneclaey, Bart Xin Yin Bauwelinck, Johan Torfs, Guy |
description | Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive. |
doi_str_mv | 10.1109/JSSC.2017.2755690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1992117830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8060975</ieee_id><sourcerecordid>1992117830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeGu6nHw0yeWoOh2DwTbQu5C2yeis60w7Yf_ejg2vDi8873vgQegeaAJAzWi6XGYJo6ASpqRMDb1AA5BSE1D88xINKAVNDKP0Gt207aaPQmgYoPkYQ6LJbjrKnzCwRBImySQftfijKj1euO3a43Fdk-dqXXWuxlndFF_YbUv87DqHF75ofn084KyKxb7qbtFVcHXr7853iFavL6vsjczmk_dsPCMF52lHjCk1aFEYYRQLwXkBLPCSG-qVoErnkLLgAjjmQq5TwWgwaRAgc51TSPkQPZ5md7H52fu2s5tmH7f9RwvGMAClOe0pOFFFbNo2-mB3sfp28WCB2qM2e9Rmj9rsWVvfeTh1Ku_9P69pSo2S_A_oRGPF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992117830</pqid></control><display><type>article</type><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><source>IEEE Electronic Library Online</source><creator>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</creator><creatorcontrib>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</creatorcontrib><description>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2755690</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>All-digital clock and data recovery (AD-CDR) ; Analog circuits ; CDR circuits ; Clock recovery ; Clocks ; Computer architecture ; Data recovery ; Detectors ; digital controlled oscillator (DCO) ; digital loop filter (DLF) ; Image edge detection ; Inverse Alexander phase detector (PD) ; Oscillators ; Phase detectors ; Phase frequency detector ; Power consumption ; Power demand ; Receivers ; subsampling ; Synthesis</subject><ispartof>IEEE journal of solid-state circuits, 2018-02, Vol.53 (2), p.470-483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</citedby><cites>FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</cites><orcidid>0000-0001-5878-706X ; 0000-0002-2986-7017 ; 0000-0002-3731-9731 ; 0000-0002-9444-6235 ; 0000-0002-9672-6652 ; 0000-0003-1817-5370 ; 0000-0001-5254-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8060975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8060975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verbeke, Marijn</creatorcontrib><creatorcontrib>Rombouts, Pieter</creatorcontrib><creatorcontrib>Ramon, Hannes</creatorcontrib><creatorcontrib>Moeneclaey, Bart</creatorcontrib><creatorcontrib>Xin Yin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</description><subject>All-digital clock and data recovery (AD-CDR)</subject><subject>Analog circuits</subject><subject>CDR circuits</subject><subject>Clock recovery</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>Data recovery</subject><subject>Detectors</subject><subject>digital controlled oscillator (DCO)</subject><subject>digital loop filter (DLF)</subject><subject>Image edge detection</subject><subject>Inverse Alexander phase detector (PD)</subject><subject>Oscillators</subject><subject>Phase detectors</subject><subject>Phase frequency detector</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Receivers</subject><subject>subsampling</subject><subject>Synthesis</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeGu6nHw0yeWoOh2DwTbQu5C2yeis60w7Yf_ejg2vDi8873vgQegeaAJAzWi6XGYJo6ASpqRMDb1AA5BSE1D88xINKAVNDKP0Gt207aaPQmgYoPkYQ6LJbjrKnzCwRBImySQftfijKj1euO3a43Fdk-dqXXWuxlndFF_YbUv87DqHF75ofn084KyKxb7qbtFVcHXr7853iFavL6vsjczmk_dsPCMF52lHjCk1aFEYYRQLwXkBLPCSG-qVoErnkLLgAjjmQq5TwWgwaRAgc51TSPkQPZ5md7H52fu2s5tmH7f9RwvGMAClOe0pOFFFbNo2-mB3sfp28WCB2qM2e9Rmj9rsWVvfeTh1Ku_9P69pSo2S_A_oRGPF</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Verbeke, Marijn</creator><creator>Rombouts, Pieter</creator><creator>Ramon, Hannes</creator><creator>Moeneclaey, Bart</creator><creator>Xin Yin</creator><creator>Bauwelinck, Johan</creator><creator>Torfs, Guy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5878-706X</orcidid><orcidid>https://orcid.org/0000-0002-2986-7017</orcidid><orcidid>https://orcid.org/0000-0002-3731-9731</orcidid><orcidid>https://orcid.org/0000-0002-9444-6235</orcidid><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid></search><sort><creationdate>20180201</creationdate><title>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</title><author>Verbeke, Marijn ; Rombouts, Pieter ; Ramon, Hannes ; Moeneclaey, Bart ; Xin Yin ; Bauwelinck, Johan ; Torfs, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-99d8184c94972ffae412f3d390e74078b162faf1a2afb86420f96f415b8b0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>All-digital clock and data recovery (AD-CDR)</topic><topic>Analog circuits</topic><topic>CDR circuits</topic><topic>Clock recovery</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>Data recovery</topic><topic>Detectors</topic><topic>digital controlled oscillator (DCO)</topic><topic>digital loop filter (DLF)</topic><topic>Image edge detection</topic><topic>Inverse Alexander phase detector (PD)</topic><topic>Oscillators</topic><topic>Phase detectors</topic><topic>Phase frequency detector</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Receivers</topic><topic>subsampling</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeke, Marijn</creatorcontrib><creatorcontrib>Rombouts, Pieter</creatorcontrib><creatorcontrib>Ramon, Hannes</creatorcontrib><creatorcontrib>Moeneclaey, Bart</creatorcontrib><creatorcontrib>Xin Yin</creatorcontrib><creatorcontrib>Bauwelinck, Johan</creatorcontrib><creatorcontrib>Torfs, Guy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verbeke, Marijn</au><au>Rombouts, Pieter</au><au>Ramon, Hannes</au><au>Moeneclaey, Bart</au><au>Xin Yin</au><au>Bauwelinck, Johan</au><au>Torfs, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm 2 and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2755690</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5878-706X</orcidid><orcidid>https://orcid.org/0000-0002-2986-7017</orcidid><orcidid>https://orcid.org/0000-0002-3731-9731</orcidid><orcidid>https://orcid.org/0000-0002-9444-6235</orcidid><orcidid>https://orcid.org/0000-0002-9672-6652</orcidid><orcidid>https://orcid.org/0000-0003-1817-5370</orcidid><orcidid>https://orcid.org/0000-0001-5254-2408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2018-02, Vol.53 (2), p.470-483 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_1992117830 |
source | IEEE Electronic Library Online |
subjects | All-digital clock and data recovery (AD-CDR) Analog circuits CDR circuits Clock recovery Clocks Computer architecture Data recovery Detectors digital controlled oscillator (DCO) digital loop filter (DLF) Image edge detection Inverse Alexander phase detector (PD) Oscillators Phase detectors Phase frequency detector Power consumption Power demand Receivers subsampling Synthesis |
title | A 1.8-pJ/b, 12.5-25-Gb/s Wide Range All-Digital Clock and Data Recovery Circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.8-pJ/b,%2012.5-25-Gb/s%20Wide%20Range%20All-Digital%20Clock%20and%20Data%20Recovery%20Circuit&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Verbeke,%20Marijn&rft.date=2018-02-01&rft.volume=53&rft.issue=2&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2755690&rft_dat=%3Cproquest_RIE%3E1992117830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992117830&rft_id=info:pmid/&rft_ieee_id=8060975&rfr_iscdi=true |