Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence

Flat plate turbulent boundary layers under zero pressure gradient are simulated using synthetic turbulence generated by the fast random particle–mesh method. The stochastic realisation is based on time-averaged turbulence statistics derived from Reynolds-averaged Navier–Stokes simulation of flat pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-09, Vol.826, p.421-454
Hauptverfasser: Hu, Nan, Reiche, Nils, Ewert, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue
container_start_page 421
container_title Journal of fluid mechanics
container_volume 826
creator Hu, Nan
Reiche, Nils
Ewert, Roland
description Flat plate turbulent boundary layers under zero pressure gradient are simulated using synthetic turbulence generated by the fast random particle–mesh method. The stochastic realisation is based on time-averaged turbulence statistics derived from Reynolds-averaged Navier–Stokes simulation of flat plate turbulent boundary layers at Reynolds numbers $\mathit{Re}_{\unicode[STIX]{x1D70F}}=2513$ and $\mathit{Re}_{\unicode[STIX]{x1D70F}}=4357$ . To determine fluctuating pressure, a Poisson equation is solved with an unsteady right-hand side source term derived from the synthetic turbulence realisation. The Poisson equation is solved via fast Fourier transform using Hockney’s method. Due to its efficiency, the applied procedure enables us to study, for high Reynolds number flow, the effect of variations of the modelled turbulence characteristics on the resulting wall pressure spectrum. The contributions to wall pressure fluctuations from the mean-shear turbulence interaction term and the turbulence–turbulence interaction term are studied separately. The results show that both contributions have the same order of magnitude. Simulated one-point spectra and two-point cross-correlations of wall pressure fluctuations are analysed in detail. Convective features of the fluctuating pressure field are well determined. Good agreement for the characteristics of the wall pressure fluctuations is found between the present results and databases from other investigators.
doi_str_mv 10.1017/jfm.2017.448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992045469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_448</cupid><sourcerecordid>1992045469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-8829cb8d8d2d96ce5c8e06732e0500e5b6c49c1e8f8149bf0897f0f1b4e761903</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq1sn6X4kRyl-gaCgnpdsdqJbdjdtPpT-e1NbxIOnGYZn3mEeQs4ZzBiw6mpphhlPzSzPxQGZsLyUWVXmxSGZAHCeMcbhmJx4vwRgc5DVhNiXboi9Cp0dqTU0RNfEHsdAGxvHVrkN7dUGHf1SfU9XDr2PDqnpow7xZ8vTz07RZ9t5nyJwvZtSNbbUb8bwgaHTv7EaT8mRUb3Hs32dkrfbm9fFffb4dPewuH7MNGdVyITgUjeiFS1vZamx0AKhrOYcoQDAoil1LjVDYQTLZWNAyMqAYU2OVckkzKfkYpe7cnYd0Yd6aaMb08maSckhL5KcRF3uKO2s9w5NvXLdkL6uGdRbpXVSWm-V1klpwmd7XA2N69p3_JP638I3fal7WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992045469</pqid></control><display><type>article</type><title>Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence</title><source>Cambridge University Press Journals Complete</source><creator>Hu, Nan ; Reiche, Nils ; Ewert, Roland</creator><creatorcontrib>Hu, Nan ; Reiche, Nils ; Ewert, Roland</creatorcontrib><description>Flat plate turbulent boundary layers under zero pressure gradient are simulated using synthetic turbulence generated by the fast random particle–mesh method. The stochastic realisation is based on time-averaged turbulence statistics derived from Reynolds-averaged Navier–Stokes simulation of flat plate turbulent boundary layers at Reynolds numbers $\mathit{Re}_{\unicode[STIX]{x1D70F}}=2513$ and $\mathit{Re}_{\unicode[STIX]{x1D70F}}=4357$ . To determine fluctuating pressure, a Poisson equation is solved with an unsteady right-hand side source term derived from the synthetic turbulence realisation. The Poisson equation is solved via fast Fourier transform using Hockney’s method. Due to its efficiency, the applied procedure enables us to study, for high Reynolds number flow, the effect of variations of the modelled turbulence characteristics on the resulting wall pressure spectrum. The contributions to wall pressure fluctuations from the mean-shear turbulence interaction term and the turbulence–turbulence interaction term are studied separately. The results show that both contributions have the same order of magnitude. Simulated one-point spectra and two-point cross-correlations of wall pressure fluctuations are analysed in detail. Convective features of the fluctuating pressure field are well determined. Good agreement for the characteristics of the wall pressure fluctuations is found between the present results and databases from other investigators.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.448</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layers ; Computational fluid dynamics ; Computer simulation ; Fast Fourier transformations ; Finite element method ; Flow control ; Flow velocity ; Fluctuations ; Fluid flow ; Formulas (mathematics) ; Fourier transforms ; High Reynolds number ; Mathematical models ; Navier-Stokes equations ; Poisson equation ; Pressure ; Pressure field ; Pressure gradients ; Reynolds averaged Navier-Stokes method ; Reynolds number ; Simulation ; Statistical methods ; Studies ; Turbulence ; Turbulent boundary layer ; Wall pressure</subject><ispartof>Journal of fluid mechanics, 2017-09, Vol.826, p.421-454</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-8829cb8d8d2d96ce5c8e06732e0500e5b6c49c1e8f8149bf0897f0f1b4e761903</citedby><cites>FETCH-LOGICAL-c217t-8829cb8d8d2d96ce5c8e06732e0500e5b6c49c1e8f8149bf0897f0f1b4e761903</cites><orcidid>0000-0002-7654-3939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017004487/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Hu, Nan</creatorcontrib><creatorcontrib>Reiche, Nils</creatorcontrib><creatorcontrib>Ewert, Roland</creatorcontrib><title>Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flat plate turbulent boundary layers under zero pressure gradient are simulated using synthetic turbulence generated by the fast random particle–mesh method. The stochastic realisation is based on time-averaged turbulence statistics derived from Reynolds-averaged Navier–Stokes simulation of flat plate turbulent boundary layers at Reynolds numbers $\mathit{Re}_{\unicode[STIX]{x1D70F}}=2513$ and $\mathit{Re}_{\unicode[STIX]{x1D70F}}=4357$ . To determine fluctuating pressure, a Poisson equation is solved with an unsteady right-hand side source term derived from the synthetic turbulence realisation. The Poisson equation is solved via fast Fourier transform using Hockney’s method. Due to its efficiency, the applied procedure enables us to study, for high Reynolds number flow, the effect of variations of the modelled turbulence characteristics on the resulting wall pressure spectrum. The contributions to wall pressure fluctuations from the mean-shear turbulence interaction term and the turbulence–turbulence interaction term are studied separately. The results show that both contributions have the same order of magnitude. Simulated one-point spectra and two-point cross-correlations of wall pressure fluctuations are analysed in detail. Convective features of the fluctuating pressure field are well determined. Good agreement for the characteristics of the wall pressure fluctuations is found between the present results and databases from other investigators.</description><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fast Fourier transformations</subject><subject>Finite element method</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Formulas (mathematics)</subject><subject>Fourier transforms</subject><subject>High Reynolds number</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Poisson equation</subject><subject>Pressure</subject><subject>Pressure field</subject><subject>Pressure gradients</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Turbulent boundary layer</subject><subject>Wall pressure</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq1sn6X4kRyl-gaCgnpdsdqJbdjdtPpT-e1NbxIOnGYZn3mEeQs4ZzBiw6mpphhlPzSzPxQGZsLyUWVXmxSGZAHCeMcbhmJx4vwRgc5DVhNiXboi9Cp0dqTU0RNfEHsdAGxvHVrkN7dUGHf1SfU9XDr2PDqnpow7xZ8vTz07RZ9t5nyJwvZtSNbbUb8bwgaHTv7EaT8mRUb3Hs32dkrfbm9fFffb4dPewuH7MNGdVyITgUjeiFS1vZamx0AKhrOYcoQDAoil1LjVDYQTLZWNAyMqAYU2OVckkzKfkYpe7cnYd0Yd6aaMb08maSckhL5KcRF3uKO2s9w5NvXLdkL6uGdRbpXVSWm-V1klpwmd7XA2N69p3_JP638I3fal7WQ</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Hu, Nan</creator><creator>Reiche, Nils</creator><creator>Ewert, Roland</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7654-3939</orcidid></search><sort><creationdate>20170910</creationdate><title>Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence</title><author>Hu, Nan ; Reiche, Nils ; Ewert, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-8829cb8d8d2d96ce5c8e06732e0500e5b6c49c1e8f8149bf0897f0f1b4e761903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fast Fourier transformations</topic><topic>Finite element method</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Formulas (mathematics)</topic><topic>Fourier transforms</topic><topic>High Reynolds number</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Poisson equation</topic><topic>Pressure</topic><topic>Pressure field</topic><topic>Pressure gradients</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Turbulent boundary layer</topic><topic>Wall pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Nan</creatorcontrib><creatorcontrib>Reiche, Nils</creatorcontrib><creatorcontrib>Ewert, Roland</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Nan</au><au>Reiche, Nils</au><au>Ewert, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-09-10</date><risdate>2017</risdate><volume>826</volume><spage>421</spage><epage>454</epage><pages>421-454</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flat plate turbulent boundary layers under zero pressure gradient are simulated using synthetic turbulence generated by the fast random particle–mesh method. The stochastic realisation is based on time-averaged turbulence statistics derived from Reynolds-averaged Navier–Stokes simulation of flat plate turbulent boundary layers at Reynolds numbers $\mathit{Re}_{\unicode[STIX]{x1D70F}}=2513$ and $\mathit{Re}_{\unicode[STIX]{x1D70F}}=4357$ . To determine fluctuating pressure, a Poisson equation is solved with an unsteady right-hand side source term derived from the synthetic turbulence realisation. The Poisson equation is solved via fast Fourier transform using Hockney’s method. Due to its efficiency, the applied procedure enables us to study, for high Reynolds number flow, the effect of variations of the modelled turbulence characteristics on the resulting wall pressure spectrum. The contributions to wall pressure fluctuations from the mean-shear turbulence interaction term and the turbulence–turbulence interaction term are studied separately. The results show that both contributions have the same order of magnitude. Simulated one-point spectra and two-point cross-correlations of wall pressure fluctuations are analysed in detail. Convective features of the fluctuating pressure field are well determined. Good agreement for the characteristics of the wall pressure fluctuations is found between the present results and databases from other investigators.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.448</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-7654-3939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-09, Vol.826, p.421-454
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1992045469
source Cambridge University Press Journals Complete
subjects Boundary layer
Boundary layers
Computational fluid dynamics
Computer simulation
Fast Fourier transformations
Finite element method
Flow control
Flow velocity
Fluctuations
Fluid flow
Formulas (mathematics)
Fourier transforms
High Reynolds number
Mathematical models
Navier-Stokes equations
Poisson equation
Pressure
Pressure field
Pressure gradients
Reynolds averaged Navier-Stokes method
Reynolds number
Simulation
Statistical methods
Studies
Turbulence
Turbulent boundary layer
Wall pressure
title Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20turbulent%20boundary%20layer%20wall%20pressure%20fluctuations%20via%20Poisson%20equation%20and%20synthetic%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hu,%20Nan&rft.date=2017-09-10&rft.volume=826&rft.spage=421&rft.epage=454&rft.pages=421-454&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.448&rft_dat=%3Cproquest_cross%3E1992045469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992045469&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_448&rfr_iscdi=true