Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000

This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-09, Vol.826, Article R5
Hauptverfasser: Willert, Christian E., Soria, Julio, Stanislas, Michel, Klinner, Joachim, Amili, Omid, Eisfelder, Michael, Cuvier, Christophe, Bellani, Gabriele, Fiorini, Tommaso, Talamelli, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 826
creator Willert, Christian E.
Soria, Julio
Stanislas, Michel
Klinner, Joachim
Amili, Omid
Eisfelder, Michael
Cuvier, Christophe
Bellani, Gabriele
Fiorini, Tommaso
Talamelli, Alessandro
description This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$ . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.
doi_str_mv 10.1017/jfm.2017.498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992045463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_498</cupid><sourcerecordid>1992045463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3218-b89fb7fd933f841fe28ed8979baeb5c8a735081c8c124f2288437a585ffbd31e3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKs7HyDg1hlPLtMkSyneoCiIXYdkJtEpczPJUHwbn8Unc0q7cOHq_Ivv_w98CF0SyAkQcbPxbU6nkHMlj9CM8IXKxIIXx2gGQGlGCIVTdBbjBoAwUGKG1s_OhGxrmgbHZFIdU11G3HtscBqDHRvXJTzUg8O-6bfYJBw_pgZ-dV9d31QRd2NrXYh4HHDqMYefbwA4RyfeNNFdHO4cre_v3paP2erl4Wl5u8pKRonMrFTeCl8pxrzkxDsqXSWVUNY4W5TSCFaAJKUsCeWeUik5E6aQhfe2YsSxObra7w6h_xxdTHrTj6GbXmqiFAVe8AWbqOs9VYY-xuC8HkLdmvClCeidOD2J0ztxehI34fkBN60NdfXu_qz-V_gFI1tvng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992045463</pqid></control><display><type>article</type><title>Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000</title><source>Cambridge University Press Journals Complete</source><creator>Willert, Christian E. ; Soria, Julio ; Stanislas, Michel ; Klinner, Joachim ; Amili, Omid ; Eisfelder, Michael ; Cuvier, Christophe ; Bellani, Gabriele ; Fiorini, Tommaso ; Talamelli, Alessandro</creator><creatorcontrib>Willert, Christian E. ; Soria, Julio ; Stanislas, Michel ; Klinner, Joachim ; Amili, Omid ; Eisfelder, Michael ; Cuvier, Christophe ; Bellani, Gabriele ; Fiorini, Tommaso ; Talamelli, Alessandro</creatorcontrib><description>This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$ . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.498</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerospace engineering ; Boundary layer ; Computational fluid dynamics ; Educational institutions ; Fluid flow ; Particle image velocimetry ; Pipe flow ; Pipes ; Rapids ; Reynolds number ; Shear ; Shear flow ; Statistical analysis ; Statistical methods ; Statistics ; Turbulence ; Turbulent flow ; Variation ; Velocity ; Velocity distribution ; Velocity measurement ; Velocity profiles</subject><ispartof>Journal of fluid mechanics, 2017-09, Vol.826, Article R5</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3218-b89fb7fd933f841fe28ed8979baeb5c8a735081c8c124f2288437a585ffbd31e3</citedby><cites>FETCH-LOGICAL-c3218-b89fb7fd933f841fe28ed8979baeb5c8a735081c8c124f2288437a585ffbd31e3</cites><orcidid>0000-0002-7089-9686 ; 0000-0002-1668-0181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017004980/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Willert, Christian E.</creatorcontrib><creatorcontrib>Soria, Julio</creatorcontrib><creatorcontrib>Stanislas, Michel</creatorcontrib><creatorcontrib>Klinner, Joachim</creatorcontrib><creatorcontrib>Amili, Omid</creatorcontrib><creatorcontrib>Eisfelder, Michael</creatorcontrib><creatorcontrib>Cuvier, Christophe</creatorcontrib><creatorcontrib>Bellani, Gabriele</creatorcontrib><creatorcontrib>Fiorini, Tommaso</creatorcontrib><creatorcontrib>Talamelli, Alessandro</creatorcontrib><title>Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$ . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.</description><subject>Aerospace engineering</subject><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Educational institutions</subject><subject>Fluid flow</subject><subject>Particle image velocimetry</subject><subject>Pipe flow</subject><subject>Pipes</subject><subject>Rapids</subject><subject>Reynolds number</subject><subject>Shear</subject><subject>Shear flow</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variation</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><subject>Velocity profiles</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKAzEUhoMoWKs7HyDg1hlPLtMkSyneoCiIXYdkJtEpczPJUHwbn8Unc0q7cOHq_Ivv_w98CF0SyAkQcbPxbU6nkHMlj9CM8IXKxIIXx2gGQGlGCIVTdBbjBoAwUGKG1s_OhGxrmgbHZFIdU11G3HtscBqDHRvXJTzUg8O-6bfYJBw_pgZ-dV9d31QRd2NrXYh4HHDqMYefbwA4RyfeNNFdHO4cre_v3paP2erl4Wl5u8pKRonMrFTeCl8pxrzkxDsqXSWVUNY4W5TSCFaAJKUsCeWeUik5E6aQhfe2YsSxObra7w6h_xxdTHrTj6GbXmqiFAVe8AWbqOs9VYY-xuC8HkLdmvClCeidOD2J0ztxehI34fkBN60NdfXu_qz-V_gFI1tvng</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Willert, Christian E.</creator><creator>Soria, Julio</creator><creator>Stanislas, Michel</creator><creator>Klinner, Joachim</creator><creator>Amili, Omid</creator><creator>Eisfelder, Michael</creator><creator>Cuvier, Christophe</creator><creator>Bellani, Gabriele</creator><creator>Fiorini, Tommaso</creator><creator>Talamelli, Alessandro</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7089-9686</orcidid><orcidid>https://orcid.org/0000-0002-1668-0181</orcidid></search><sort><creationdate>20170910</creationdate><title>Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000</title><author>Willert, Christian E. ; Soria, Julio ; Stanislas, Michel ; Klinner, Joachim ; Amili, Omid ; Eisfelder, Michael ; Cuvier, Christophe ; Bellani, Gabriele ; Fiorini, Tommaso ; Talamelli, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3218-b89fb7fd933f841fe28ed8979baeb5c8a735081c8c124f2288437a585ffbd31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerospace engineering</topic><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Educational institutions</topic><topic>Fluid flow</topic><topic>Particle image velocimetry</topic><topic>Pipe flow</topic><topic>Pipes</topic><topic>Rapids</topic><topic>Reynolds number</topic><topic>Shear</topic><topic>Shear flow</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variation</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><topic>Velocity profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willert, Christian E.</creatorcontrib><creatorcontrib>Soria, Julio</creatorcontrib><creatorcontrib>Stanislas, Michel</creatorcontrib><creatorcontrib>Klinner, Joachim</creatorcontrib><creatorcontrib>Amili, Omid</creatorcontrib><creatorcontrib>Eisfelder, Michael</creatorcontrib><creatorcontrib>Cuvier, Christophe</creatorcontrib><creatorcontrib>Bellani, Gabriele</creatorcontrib><creatorcontrib>Fiorini, Tommaso</creatorcontrib><creatorcontrib>Talamelli, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willert, Christian E.</au><au>Soria, Julio</au><au>Stanislas, Michel</au><au>Klinner, Joachim</au><au>Amili, Omid</au><au>Eisfelder, Michael</au><au>Cuvier, Christophe</au><au>Bellani, Gabriele</au><au>Fiorini, Tommaso</au><au>Talamelli, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-09-10</date><risdate>2017</risdate><volume>826</volume><artnum>R5</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$ . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.498</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7089-9686</orcidid><orcidid>https://orcid.org/0000-0002-1668-0181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-09, Vol.826, Article R5
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1992045463
source Cambridge University Press Journals Complete
subjects Aerospace engineering
Boundary layer
Computational fluid dynamics
Educational institutions
Fluid flow
Particle image velocimetry
Pipe flow
Pipes
Rapids
Reynolds number
Shear
Shear flow
Statistical analysis
Statistical methods
Statistics
Turbulence
Turbulent flow
Variation
Velocity
Velocity distribution
Velocity measurement
Velocity profiles
title Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-wall%20statistics%20of%20a%20turbulent%20pipe%20flow%20at%20shear%20Reynolds%20numbers%20up%20to%2040%C2%A0000&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Willert,%20Christian%20E.&rft.date=2017-09-10&rft.volume=826&rft.artnum=R5&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.498&rft_dat=%3Cproquest_cross%3E1992045463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992045463&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_498&rfr_iscdi=true