Thin-walled structural configurations for enhanced crashworthiness
Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation...
Gespeichert in:
Veröffentlicht in: | International journal of crashworthiness 2018-01, Vol.23 (1), p.57-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | International journal of crashworthiness |
container_volume | 23 |
creator | Reddy, T. J. Rao, Y. V. D. Narayanamurthy, V. |
description | Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F
peak
) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended. |
doi_str_mv | 10.1080/13588265.2017.1306824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1992021216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992021216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTU3aTKZnVp8QcFN9yFPO2U6qUmG0n9vSuvWzb138Z1zOQehe8AzwAI_AmVCEM5mBEMzA4q5IPMLNIGGzWsCAJflLkx9hK7RTUobjClvGUzQy2rdDfVe9b2zVcpxNHmMqq9MGHz3Xc7chSFVPsTKDWs1mIKZqNJ6H2IuUpfSLbryqk_u7rynaPX2ulp81Muv98_F87I2lIpce62001hwaj22jGjtHVjbaEcFNK1trGLGCfAtocZzNqegTZmcW8oVo1P0cLLdxfAzupTlJoxxKB8ltC3BBAjwQrETZWJIKTovd7HbqniQgOWxLfnXljy2Jc9tFd3TSdcNJetWlXi9lVkd-hB9LLm7JOn_Fr8pCHJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992021216</pqid></control><display><type>article</type><title>Thin-walled structural configurations for enhanced crashworthiness</title><source>Taylor & Francis Journals Complete</source><creator>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</creator><creatorcontrib>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</creatorcontrib><description>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F
peak
) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</description><identifier>ISSN: 1358-8265</identifier><identifier>EISSN: 1754-2111</identifier><identifier>DOI: 10.1080/13588265.2017.1306824</identifier><language>eng</language><publisher>Cambridge: Taylor & Francis</publisher><subject>Aluminum ; Aluminum base alloys ; Automobiles ; Collisions ; Configuration management ; Configurations ; Crashworthiness ; crush stroke ; Crushing ; Deceleration ; deceleration levels ; Deformation ; Energy ; Energy absorbing structures ; Energy absorption ; Finite element method ; Impact strength ; initial peak crush force ; Mathematical models ; Motor vehicles ; Passenger safety ; Passengers ; Plastic deformation ; Plastics ; specific energy absorption ; Traffic accidents ; Weight reduction</subject><ispartof>International journal of crashworthiness, 2018-01, Vol.23 (1), p.57-73</ispartof><rights>2017 Informa UK Limited, trading as Taylor & Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</citedby><cites>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13588265.2017.1306824$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13588265.2017.1306824$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Reddy, T. J.</creatorcontrib><creatorcontrib>Rao, Y. V. D.</creatorcontrib><creatorcontrib>Narayanamurthy, V.</creatorcontrib><title>Thin-walled structural configurations for enhanced crashworthiness</title><title>International journal of crashworthiness</title><description>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F
peak
) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Automobiles</subject><subject>Collisions</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Crashworthiness</subject><subject>crush stroke</subject><subject>Crushing</subject><subject>Deceleration</subject><subject>deceleration levels</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy absorbing structures</subject><subject>Energy absorption</subject><subject>Finite element method</subject><subject>Impact strength</subject><subject>initial peak crush force</subject><subject>Mathematical models</subject><subject>Motor vehicles</subject><subject>Passenger safety</subject><subject>Passengers</subject><subject>Plastic deformation</subject><subject>Plastics</subject><subject>specific energy absorption</subject><subject>Traffic accidents</subject><subject>Weight reduction</subject><issn>1358-8265</issn><issn>1754-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTU3aTKZnVp8QcFN9yFPO2U6qUmG0n9vSuvWzb138Z1zOQehe8AzwAI_AmVCEM5mBEMzA4q5IPMLNIGGzWsCAJflLkx9hK7RTUobjClvGUzQy2rdDfVe9b2zVcpxNHmMqq9MGHz3Xc7chSFVPsTKDWs1mIKZqNJ6H2IuUpfSLbryqk_u7rynaPX2ulp81Muv98_F87I2lIpce62001hwaj22jGjtHVjbaEcFNK1trGLGCfAtocZzNqegTZmcW8oVo1P0cLLdxfAzupTlJoxxKB8ltC3BBAjwQrETZWJIKTovd7HbqniQgOWxLfnXljy2Jc9tFd3TSdcNJetWlXi9lVkd-hB9LLm7JOn_Fr8pCHJ7</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Reddy, T. J.</creator><creator>Rao, Y. V. D.</creator><creator>Narayanamurthy, V.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>U9A</scope></search><sort><creationdate>20180102</creationdate><title>Thin-walled structural configurations for enhanced crashworthiness</title><author>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Automobiles</topic><topic>Collisions</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Crashworthiness</topic><topic>crush stroke</topic><topic>Crushing</topic><topic>Deceleration</topic><topic>deceleration levels</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy absorbing structures</topic><topic>Energy absorption</topic><topic>Finite element method</topic><topic>Impact strength</topic><topic>initial peak crush force</topic><topic>Mathematical models</topic><topic>Motor vehicles</topic><topic>Passenger safety</topic><topic>Passengers</topic><topic>Plastic deformation</topic><topic>Plastics</topic><topic>specific energy absorption</topic><topic>Traffic accidents</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, T. J.</creatorcontrib><creatorcontrib>Rao, Y. V. D.</creatorcontrib><creatorcontrib>Narayanamurthy, V.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><jtitle>International journal of crashworthiness</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, T. J.</au><au>Rao, Y. V. D.</au><au>Narayanamurthy, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-walled structural configurations for enhanced crashworthiness</atitle><jtitle>International journal of crashworthiness</jtitle><date>2018-01-02</date><risdate>2018</risdate><volume>23</volume><issue>1</issue><spage>57</spage><epage>73</epage><pages>57-73</pages><issn>1358-8265</issn><eissn>1754-2111</eissn><abstract>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F
peak
) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</abstract><cop>Cambridge</cop><pub>Taylor & Francis</pub><doi>10.1080/13588265.2017.1306824</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1358-8265 |
ispartof | International journal of crashworthiness, 2018-01, Vol.23 (1), p.57-73 |
issn | 1358-8265 1754-2111 |
language | eng |
recordid | cdi_proquest_journals_1992021216 |
source | Taylor & Francis Journals Complete |
subjects | Aluminum Aluminum base alloys Automobiles Collisions Configuration management Configurations Crashworthiness crush stroke Crushing Deceleration deceleration levels Deformation Energy Energy absorbing structures Energy absorption Finite element method Impact strength initial peak crush force Mathematical models Motor vehicles Passenger safety Passengers Plastic deformation Plastics specific energy absorption Traffic accidents Weight reduction |
title | Thin-walled structural configurations for enhanced crashworthiness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-walled%20structural%20configurations%20for%20enhanced%20crashworthiness&rft.jtitle=International%20journal%20of%20crashworthiness&rft.au=Reddy,%20T.%20J.&rft.date=2018-01-02&rft.volume=23&rft.issue=1&rft.spage=57&rft.epage=73&rft.pages=57-73&rft.issn=1358-8265&rft.eissn=1754-2111&rft_id=info:doi/10.1080/13588265.2017.1306824&rft_dat=%3Cproquest_infor%3E1992021216%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992021216&rft_id=info:pmid/&rfr_iscdi=true |