Thin-walled structural configurations for enhanced crashworthiness

Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of crashworthiness 2018-01, Vol.23 (1), p.57-73
Hauptverfasser: Reddy, T. J., Rao, Y. V. D., Narayanamurthy, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 57
container_title International journal of crashworthiness
container_volume 23
creator Reddy, T. J.
Rao, Y. V. D.
Narayanamurthy, V.
description Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F peak ) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.
doi_str_mv 10.1080/13588265.2017.1306824
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1992021216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992021216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTU3aTKZnVp8QcFN9yFPO2U6qUmG0n9vSuvWzb138Z1zOQehe8AzwAI_AmVCEM5mBEMzA4q5IPMLNIGGzWsCAJflLkx9hK7RTUobjClvGUzQy2rdDfVe9b2zVcpxNHmMqq9MGHz3Xc7chSFVPsTKDWs1mIKZqNJ6H2IuUpfSLbryqk_u7rynaPX2ulp81Muv98_F87I2lIpce62001hwaj22jGjtHVjbaEcFNK1trGLGCfAtocZzNqegTZmcW8oVo1P0cLLdxfAzupTlJoxxKB8ltC3BBAjwQrETZWJIKTovd7HbqniQgOWxLfnXljy2Jc9tFd3TSdcNJetWlXi9lVkd-hB9LLm7JOn_Fr8pCHJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992021216</pqid></control><display><type>article</type><title>Thin-walled structural configurations for enhanced crashworthiness</title><source>Taylor &amp; Francis Journals Complete</source><creator>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</creator><creatorcontrib>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</creatorcontrib><description>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F peak ) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</description><identifier>ISSN: 1358-8265</identifier><identifier>EISSN: 1754-2111</identifier><identifier>DOI: 10.1080/13588265.2017.1306824</identifier><language>eng</language><publisher>Cambridge: Taylor &amp; Francis</publisher><subject>Aluminum ; Aluminum base alloys ; Automobiles ; Collisions ; Configuration management ; Configurations ; Crashworthiness ; crush stroke ; Crushing ; Deceleration ; deceleration levels ; Deformation ; Energy ; Energy absorbing structures ; Energy absorption ; Finite element method ; Impact strength ; initial peak crush force ; Mathematical models ; Motor vehicles ; Passenger safety ; Passengers ; Plastic deformation ; Plastics ; specific energy absorption ; Traffic accidents ; Weight reduction</subject><ispartof>International journal of crashworthiness, 2018-01, Vol.23 (1), p.57-73</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</citedby><cites>FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13588265.2017.1306824$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13588265.2017.1306824$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Reddy, T. J.</creatorcontrib><creatorcontrib>Rao, Y. V. D.</creatorcontrib><creatorcontrib>Narayanamurthy, V.</creatorcontrib><title>Thin-walled structural configurations for enhanced crashworthiness</title><title>International journal of crashworthiness</title><description>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F peak ) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Automobiles</subject><subject>Collisions</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Crashworthiness</subject><subject>crush stroke</subject><subject>Crushing</subject><subject>Deceleration</subject><subject>deceleration levels</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy absorbing structures</subject><subject>Energy absorption</subject><subject>Finite element method</subject><subject>Impact strength</subject><subject>initial peak crush force</subject><subject>Mathematical models</subject><subject>Motor vehicles</subject><subject>Passenger safety</subject><subject>Passengers</subject><subject>Plastic deformation</subject><subject>Plastics</subject><subject>specific energy absorption</subject><subject>Traffic accidents</subject><subject>Weight reduction</subject><issn>1358-8265</issn><issn>1754-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTU3aTKZnVp8QcFN9yFPO2U6qUmG0n9vSuvWzb138Z1zOQehe8AzwAI_AmVCEM5mBEMzA4q5IPMLNIGGzWsCAJflLkx9hK7RTUobjClvGUzQy2rdDfVe9b2zVcpxNHmMqq9MGHz3Xc7chSFVPsTKDWs1mIKZqNJ6H2IuUpfSLbryqk_u7rynaPX2ulp81Muv98_F87I2lIpce62001hwaj22jGjtHVjbaEcFNK1trGLGCfAtocZzNqegTZmcW8oVo1P0cLLdxfAzupTlJoxxKB8ltC3BBAjwQrETZWJIKTovd7HbqniQgOWxLfnXljy2Jc9tFd3TSdcNJetWlXi9lVkd-hB9LLm7JOn_Fr8pCHJ7</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Reddy, T. J.</creator><creator>Rao, Y. V. D.</creator><creator>Narayanamurthy, V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>U9A</scope></search><sort><creationdate>20180102</creationdate><title>Thin-walled structural configurations for enhanced crashworthiness</title><author>Reddy, T. J. ; Rao, Y. V. D. ; Narayanamurthy, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-fbabeb0863df0d52bbfe1dd7be38179d7da5ce81f923cf65431bc54366d36a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Automobiles</topic><topic>Collisions</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Crashworthiness</topic><topic>crush stroke</topic><topic>Crushing</topic><topic>Deceleration</topic><topic>deceleration levels</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy absorbing structures</topic><topic>Energy absorption</topic><topic>Finite element method</topic><topic>Impact strength</topic><topic>initial peak crush force</topic><topic>Mathematical models</topic><topic>Motor vehicles</topic><topic>Passenger safety</topic><topic>Passengers</topic><topic>Plastic deformation</topic><topic>Plastics</topic><topic>specific energy absorption</topic><topic>Traffic accidents</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, T. J.</creatorcontrib><creatorcontrib>Rao, Y. V. D.</creatorcontrib><creatorcontrib>Narayanamurthy, V.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><jtitle>International journal of crashworthiness</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, T. J.</au><au>Rao, Y. V. D.</au><au>Narayanamurthy, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-walled structural configurations for enhanced crashworthiness</atitle><jtitle>International journal of crashworthiness</jtitle><date>2018-01-02</date><risdate>2018</risdate><volume>23</volume><issue>1</issue><spage>57</spage><epage>73</epage><pages>57-73</pages><issn>1358-8265</issn><eissn>1754-2111</eissn><abstract>Passenger safety is an important aspect in the design and construction of automobiles. This is achieved in frontal collisions by introducing energy absorbing (EA) structures known as crumple zones or crush cans within the frontal structures that absorb impact energy by controlled plastic deformation and attenuate the intensity of impact during collisions. Although considerable research is carried out till date in developing a variety of EA structures, major limitations in most structures is that they exhibit high initial peak force (F peak ) and low stroke efficiency (SE). This paper aims to develop thin walled EA structural configurations that can weaken the intensity of impact-induced decelerations while maximising the energy absorbed. It initially presents finite element analysis (FEA) of an existing EA structure taken from a literature whose experimental results are available for validation of numerical modelling and analysis procedures. Subsequently, it presents five EA structural configurations, their numerical analyses and assessment of their crashworthiness based on important parameters such as crush force efficiency (CFE), SE and specific energy absorption (SEA). Aluminium alloy AA7005 in T6 state is used for the proposed EA structures. The relative merits of each configuration are discussed based on results of numerical analyses and the best configuration with all-round performance in crashworthiness is recommended.</abstract><cop>Cambridge</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13588265.2017.1306824</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1358-8265
ispartof International journal of crashworthiness, 2018-01, Vol.23 (1), p.57-73
issn 1358-8265
1754-2111
language eng
recordid cdi_proquest_journals_1992021216
source Taylor & Francis Journals Complete
subjects Aluminum
Aluminum base alloys
Automobiles
Collisions
Configuration management
Configurations
Crashworthiness
crush stroke
Crushing
Deceleration
deceleration levels
Deformation
Energy
Energy absorbing structures
Energy absorption
Finite element method
Impact strength
initial peak crush force
Mathematical models
Motor vehicles
Passenger safety
Passengers
Plastic deformation
Plastics
specific energy absorption
Traffic accidents
Weight reduction
title Thin-walled structural configurations for enhanced crashworthiness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-walled%20structural%20configurations%20for%20enhanced%20crashworthiness&rft.jtitle=International%20journal%20of%20crashworthiness&rft.au=Reddy,%20T.%20J.&rft.date=2018-01-02&rft.volume=23&rft.issue=1&rft.spage=57&rft.epage=73&rft.pages=57-73&rft.issn=1358-8265&rft.eissn=1754-2111&rft_id=info:doi/10.1080/13588265.2017.1306824&rft_dat=%3Cproquest_infor%3E1992021216%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992021216&rft_id=info:pmid/&rfr_iscdi=true