Multiple Rank-1 Lattices as Sampling Schemes for Multivariate Trigonometric Polynomials

We present a new sampling method that allows for the unique reconstruction of (sparse) multivariate trigonometric polynomials. The crucial idea is to use several rank-1 lattices as spatial discretization in order to overcome limitations of a single rank-1 lattice sampling method. The structure of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2018-02, Vol.24 (1), p.17-44
1. Verfasser: Kämmerer, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new sampling method that allows for the unique reconstruction of (sparse) multivariate trigonometric polynomials. The crucial idea is to use several rank-1 lattices as spatial discretization in order to overcome limitations of a single rank-1 lattice sampling method. The structure of the corresponding sampling scheme allows for the fast computation of the evaluation and the reconstruction of multivariate trigonometric polynomials, i.e., a fast Fourier transform. Moreover, we present a first algorithm that constructs a reconstructing sampling scheme consisting of several rank - 1 lattices for arbitrary, given frequency index sets. Various numerical tests indicate the advantages of the constructed sampling schemes.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-016-9520-8