The Case Against an Early Lunar Dynamo Powered by Core Convection

Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo‐generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insuff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2018-01, Vol.45 (1), p.98-107
Hauptverfasser: Evans, Alexander J., Tikoo, Sonia M., Andrews‐Hanna, Jeffrey C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 1
container_start_page 98
container_title Geophysical research letters
container_volume 45
creator Evans, Alexander J.
Tikoo, Sonia M.
Andrews‐Hanna, Jeffrey C.
description Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo‐generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long‐lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the ~50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field. Key Points The possibility that lunar core convection could generate a low‐intensity magnetic field of ≤1.9 μT for 4.3 Gyr cannot be excluded An exotic mechanism or energy source is required to produce ~50 μT fields between 3.85 and 3.56 Ga Neither a superheated core nor a dense KREEP‐rich layer above the core can provide the energy needed for an early, intense lunar dynamo
doi_str_mv 10.1002/2017GL075441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990917760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990917760</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3958-14cbb377006b3897470080a0f859df42b64acf003d09450e85359464733b3f4f3</originalsourceid><addsrcrecordid>eNp9kEFPAyEUhInRxFq9-QNIvLr6WGCBY7O21WQTjalnwm5Bt2mhQmuz_15MPXjyNHP43pvJIHRN4I4AlPclEDFvQHDGyAkaEcVYIQHEKRoBqOxLUZ2ji5RWAECBkhGaLD4srk2yePJuep922Hg8NXE94GbvTcQPgzebgF_CwUa7xO2A6xDzSfBfttv1wV-iM2fWyV796hi9zaaL-rFonudP9aQpDFVcFoR1bUuFAKhaKpVg2Ukw4CRXS8fKtmKmc7nWMjflYCWnXLGKCUpb6pijY3Rz_LuN4XNv006vwj76HKmJUqCIEBVk6vZIdTGkFK3T29hvTBw0Af0zkv47UsbLI37o13b4l9Xz14ZXXEr6DeVfZEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990917760</pqid></control><display><type>article</type><title>The Case Against an Early Lunar Dynamo Powered by Core Convection</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Evans, Alexander J. ; Tikoo, Sonia M. ; Andrews‐Hanna, Jeffrey C.</creator><creatorcontrib>Evans, Alexander J. ; Tikoo, Sonia M. ; Andrews‐Hanna, Jeffrey C.</creatorcontrib><description>Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo‐generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long‐lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the ~50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field. Key Points The possibility that lunar core convection could generate a low‐intensity magnetic field of ≤1.9 μT for 4.3 Gyr cannot be excluded An exotic mechanism or energy source is required to produce ~50 μT fields between 3.85 and 3.56 Ga Neither a superheated core nor a dense KREEP‐rich layer above the core can provide the energy needed for an early, intense lunar dynamo</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL075441</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Convection ; core ; Duration ; dynamo ; Energy sources ; lunar ; Lunar magnetic fields ; Lunar surface ; magnetic ; Magnetic field ; Magnetic fields ; Magnetism ; Microprocessors ; Moon ; Palaeomagnetism ; Paleomagnetism</subject><ispartof>Geophysical research letters, 2018-01, Vol.45 (1), p.98-107</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3958-14cbb377006b3897470080a0f859df42b64acf003d09450e85359464733b3f4f3</citedby><cites>FETCH-LOGICAL-a3958-14cbb377006b3897470080a0f859df42b64acf003d09450e85359464733b3f4f3</cites><orcidid>0000-0002-3644-1313 ; 0000-0001-9374-7776 ; 0000-0001-9524-8284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL075441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL075441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Evans, Alexander J.</creatorcontrib><creatorcontrib>Tikoo, Sonia M.</creatorcontrib><creatorcontrib>Andrews‐Hanna, Jeffrey C.</creatorcontrib><title>The Case Against an Early Lunar Dynamo Powered by Core Convection</title><title>Geophysical research letters</title><description>Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo‐generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long‐lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the ~50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field. Key Points The possibility that lunar core convection could generate a low‐intensity magnetic field of ≤1.9 μT for 4.3 Gyr cannot be excluded An exotic mechanism or energy source is required to produce ~50 μT fields between 3.85 and 3.56 Ga Neither a superheated core nor a dense KREEP‐rich layer above the core can provide the energy needed for an early, intense lunar dynamo</description><subject>Convection</subject><subject>core</subject><subject>Duration</subject><subject>dynamo</subject><subject>Energy sources</subject><subject>lunar</subject><subject>Lunar magnetic fields</subject><subject>Lunar surface</subject><subject>magnetic</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Microprocessors</subject><subject>Moon</subject><subject>Palaeomagnetism</subject><subject>Paleomagnetism</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEUhInRxFq9-QNIvLr6WGCBY7O21WQTjalnwm5Bt2mhQmuz_15MPXjyNHP43pvJIHRN4I4AlPclEDFvQHDGyAkaEcVYIQHEKRoBqOxLUZ2ji5RWAECBkhGaLD4srk2yePJuep922Hg8NXE94GbvTcQPgzebgF_CwUa7xO2A6xDzSfBfttv1wV-iM2fWyV796hi9zaaL-rFonudP9aQpDFVcFoR1bUuFAKhaKpVg2Ukw4CRXS8fKtmKmc7nWMjflYCWnXLGKCUpb6pijY3Rz_LuN4XNv006vwj76HKmJUqCIEBVk6vZIdTGkFK3T29hvTBw0Af0zkv47UsbLI37o13b4l9Xz14ZXXEr6DeVfZEM</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Evans, Alexander J.</creator><creator>Tikoo, Sonia M.</creator><creator>Andrews‐Hanna, Jeffrey C.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3644-1313</orcidid><orcidid>https://orcid.org/0000-0001-9374-7776</orcidid><orcidid>https://orcid.org/0000-0001-9524-8284</orcidid></search><sort><creationdate>20180116</creationdate><title>The Case Against an Early Lunar Dynamo Powered by Core Convection</title><author>Evans, Alexander J. ; Tikoo, Sonia M. ; Andrews‐Hanna, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3958-14cbb377006b3897470080a0f859df42b64acf003d09450e85359464733b3f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convection</topic><topic>core</topic><topic>Duration</topic><topic>dynamo</topic><topic>Energy sources</topic><topic>lunar</topic><topic>Lunar magnetic fields</topic><topic>Lunar surface</topic><topic>magnetic</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Microprocessors</topic><topic>Moon</topic><topic>Palaeomagnetism</topic><topic>Paleomagnetism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Alexander J.</creatorcontrib><creatorcontrib>Tikoo, Sonia M.</creatorcontrib><creatorcontrib>Andrews‐Hanna, Jeffrey C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Alexander J.</au><au>Tikoo, Sonia M.</au><au>Andrews‐Hanna, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Case Against an Early Lunar Dynamo Powered by Core Convection</atitle><jtitle>Geophysical research letters</jtitle><date>2018-01-16</date><risdate>2018</risdate><volume>45</volume><issue>1</issue><spage>98</spage><epage>107</epage><pages>98-107</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo‐generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long‐lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the ~50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field. Key Points The possibility that lunar core convection could generate a low‐intensity magnetic field of ≤1.9 μT for 4.3 Gyr cannot be excluded An exotic mechanism or energy source is required to produce ~50 μT fields between 3.85 and 3.56 Ga Neither a superheated core nor a dense KREEP‐rich layer above the core can provide the energy needed for an early, intense lunar dynamo</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL075441</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3644-1313</orcidid><orcidid>https://orcid.org/0000-0001-9374-7776</orcidid><orcidid>https://orcid.org/0000-0001-9524-8284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2018-01, Vol.45 (1), p.98-107
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1990917760
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Convection
core
Duration
dynamo
Energy sources
lunar
Lunar magnetic fields
Lunar surface
magnetic
Magnetic field
Magnetic fields
Magnetism
Microprocessors
Moon
Palaeomagnetism
Paleomagnetism
title The Case Against an Early Lunar Dynamo Powered by Core Convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Case%20Against%20an%20Early%20Lunar%20Dynamo%20Powered%20by%20Core%20Convection&rft.jtitle=Geophysical%20research%20letters&rft.au=Evans,%20Alexander%20J.&rft.date=2018-01-16&rft.volume=45&rft.issue=1&rft.spage=98&rft.epage=107&rft.pages=98-107&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL075441&rft_dat=%3Cproquest_cross%3E1990917760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990917760&rft_id=info:pmid/&rfr_iscdi=true