Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT
Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-i...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2018-01, Vol.732, p.160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 160 |
container_title | Journal of alloys and compounds |
container_volume | 732 |
creator | Chattaraj, D Majumder, C |
description | Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1990826545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990826545</sourcerecordid><originalsourceid>FETCH-proquest_journals_19908265453</originalsourceid><addsrcrecordid>eNqNzc1OwzAQBGALgUT4eYeVuBLJiZtgc0NAxb3lmsp1ttRVYgfvulJPvDot6gNwmu8wmrkQRaWfVDlrW3MpCmnqptRK62txQ7STUlZGVYX4WXDKjnOywyPggI5TDN6dbIlP2Pt1suxjsAPY0ANvMY2xPwQ7egdTihMm9kgQN_DZUV6D6hb-D3X3DC_g4jgl3GIgv0cgzv0BMvnwBW_z5Z242tiB8P6ct-Jh_r58_SiPw98ZiVe7mNPxm1aVMVLXbTNr1P9avylwUXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990826545</pqid></control><display><type>article</type><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chattaraj, D ; Majumder, C</creator><creatorcontrib>Chattaraj, D ; Majumder, C</creatorcontrib><description>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Alloys ; Chemical bonds ; Density functional theory ; Elastic anisotropy ; Elastic properties ; Electronic structure ; Energy levels ; Enriched fuel reactors ; Intermetallic compounds ; Lattice parameters ; Light water reactors ; Materials elasticity ; Mathematical analysis ; Mechanical properties ; Nuclear fuels ; Nuclear reactors ; Pressure ; Silicon ; Spin-orbit interactions ; Temperature dependence ; Thermodynamic properties ; Thermodynamics ; Uranium silicide ; Vibration ; Zero point energy</subject><ispartof>Journal of alloys and compounds, 2018-01, Vol.732, p.160</ispartof><rights>Copyright Elsevier BV Jan 25, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Chattaraj, D</creatorcontrib><creatorcontrib>Majumder, C</creatorcontrib><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><title>Journal of alloys and compounds</title><description>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</description><subject>Alloys</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Electronic structure</subject><subject>Energy levels</subject><subject>Enriched fuel reactors</subject><subject>Intermetallic compounds</subject><subject>Lattice parameters</subject><subject>Light water reactors</subject><subject>Materials elasticity</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Pressure</subject><subject>Silicon</subject><subject>Spin-orbit interactions</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Uranium silicide</subject><subject>Vibration</subject><subject>Zero point energy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNzc1OwzAQBGALgUT4eYeVuBLJiZtgc0NAxb3lmsp1ttRVYgfvulJPvDot6gNwmu8wmrkQRaWfVDlrW3MpCmnqptRK62txQ7STUlZGVYX4WXDKjnOywyPggI5TDN6dbIlP2Pt1suxjsAPY0ANvMY2xPwQ7egdTihMm9kgQN_DZUV6D6hb-D3X3DC_g4jgl3GIgv0cgzv0BMvnwBW_z5Z242tiB8P6ct-Jh_r58_SiPw98ZiVe7mNPxm1aVMVLXbTNr1P9avylwUXs</recordid><startdate>20180125</startdate><enddate>20180125</enddate><creator>Chattaraj, D</creator><creator>Majumder, C</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180125</creationdate><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><author>Chattaraj, D ; Majumder, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19908265453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Electronic structure</topic><topic>Energy levels</topic><topic>Enriched fuel reactors</topic><topic>Intermetallic compounds</topic><topic>Lattice parameters</topic><topic>Light water reactors</topic><topic>Materials elasticity</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Pressure</topic><topic>Silicon</topic><topic>Spin-orbit interactions</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Uranium silicide</topic><topic>Vibration</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chattaraj, D</creatorcontrib><creatorcontrib>Majumder, C</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chattaraj, D</au><au>Majumder, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-01-25</date><risdate>2018</risdate><volume>732</volume><spage>160</spage><pages>160-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-01, Vol.732, p.160 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_1990826545 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloys Chemical bonds Density functional theory Elastic anisotropy Elastic properties Electronic structure Energy levels Enriched fuel reactors Intermetallic compounds Lattice parameters Light water reactors Materials elasticity Mathematical analysis Mechanical properties Nuclear fuels Nuclear reactors Pressure Silicon Spin-orbit interactions Temperature dependence Thermodynamic properties Thermodynamics Uranium silicide Vibration Zero point energy |
title | Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20electronic,%20elastic,%20vibrational%20and%20thermodynamic%20properties%20of%20U%5Esub%203%5ESi%5Esub%202%5E:%20A%20comprehensive%20study%20using%20DFT&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Chattaraj,%20D&rft.date=2018-01-25&rft.volume=732&rft.spage=160&rft.pages=160-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/&rft_dat=%3Cproquest%3E1990826545%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990826545&rft_id=info:pmid/&rfr_iscdi=true |