Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT

Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2018-01, Vol.732, p.160
Hauptverfasser: Chattaraj, D, Majumder, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 160
container_title Journal of alloys and compounds
container_volume 732
creator Chattaraj, D
Majumder, C
description Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1990826545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990826545</sourcerecordid><originalsourceid>FETCH-proquest_journals_19908265453</originalsourceid><addsrcrecordid>eNqNzc1OwzAQBGALgUT4eYeVuBLJiZtgc0NAxb3lmsp1ttRVYgfvulJPvDot6gNwmu8wmrkQRaWfVDlrW3MpCmnqptRK62txQ7STUlZGVYX4WXDKjnOywyPggI5TDN6dbIlP2Pt1suxjsAPY0ANvMY2xPwQ7egdTihMm9kgQN_DZUV6D6hb-D3X3DC_g4jgl3GIgv0cgzv0BMvnwBW_z5Z242tiB8P6ct-Jh_r58_SiPw98ZiVe7mNPxm1aVMVLXbTNr1P9avylwUXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990826545</pqid></control><display><type>article</type><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chattaraj, D ; Majumder, C</creator><creatorcontrib>Chattaraj, D ; Majumder, C</creatorcontrib><description>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Alloys ; Chemical bonds ; Density functional theory ; Elastic anisotropy ; Elastic properties ; Electronic structure ; Energy levels ; Enriched fuel reactors ; Intermetallic compounds ; Lattice parameters ; Light water reactors ; Materials elasticity ; Mathematical analysis ; Mechanical properties ; Nuclear fuels ; Nuclear reactors ; Pressure ; Silicon ; Spin-orbit interactions ; Temperature dependence ; Thermodynamic properties ; Thermodynamics ; Uranium silicide ; Vibration ; Zero point energy</subject><ispartof>Journal of alloys and compounds, 2018-01, Vol.732, p.160</ispartof><rights>Copyright Elsevier BV Jan 25, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Chattaraj, D</creatorcontrib><creatorcontrib>Majumder, C</creatorcontrib><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><title>Journal of alloys and compounds</title><description>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</description><subject>Alloys</subject><subject>Chemical bonds</subject><subject>Density functional theory</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Electronic structure</subject><subject>Energy levels</subject><subject>Enriched fuel reactors</subject><subject>Intermetallic compounds</subject><subject>Lattice parameters</subject><subject>Light water reactors</subject><subject>Materials elasticity</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Pressure</subject><subject>Silicon</subject><subject>Spin-orbit interactions</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Uranium silicide</subject><subject>Vibration</subject><subject>Zero point energy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNzc1OwzAQBGALgUT4eYeVuBLJiZtgc0NAxb3lmsp1ttRVYgfvulJPvDot6gNwmu8wmrkQRaWfVDlrW3MpCmnqptRK62txQ7STUlZGVYX4WXDKjnOywyPggI5TDN6dbIlP2Pt1suxjsAPY0ANvMY2xPwQ7egdTihMm9kgQN_DZUV6D6hb-D3X3DC_g4jgl3GIgv0cgzv0BMvnwBW_z5Z242tiB8P6ct-Jh_r58_SiPw98ZiVe7mNPxm1aVMVLXbTNr1P9avylwUXs</recordid><startdate>20180125</startdate><enddate>20180125</enddate><creator>Chattaraj, D</creator><creator>Majumder, C</creator><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180125</creationdate><title>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</title><author>Chattaraj, D ; Majumder, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19908265453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Chemical bonds</topic><topic>Density functional theory</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Electronic structure</topic><topic>Energy levels</topic><topic>Enriched fuel reactors</topic><topic>Intermetallic compounds</topic><topic>Lattice parameters</topic><topic>Light water reactors</topic><topic>Materials elasticity</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Pressure</topic><topic>Silicon</topic><topic>Spin-orbit interactions</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Uranium silicide</topic><topic>Vibration</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chattaraj, D</creatorcontrib><creatorcontrib>Majumder, C</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chattaraj, D</au><au>Majumder, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-01-25</date><risdate>2018</risdate><volume>732</volume><spage>160</spage><pages>160-</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Uranium silicide compound is a promising candidate as low enriched uranium nuclear fuel in light water reactors. Here we report a comprehensive study on structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2 using plane wave based density functional theory. The electron-ion interaction and exchange-correlation energy terms have been described by projected-augmented wave method and generalized gradient approximation scheme, respectively. The relativistic corrections to the total energy have been accounted by incorporating the spin-orbit interactions in the total energy calculations. The results showed good agreement between the experimental and theoretical lattice parameters. The electronic structure of U3Si2 compound suggests significant contribution from the 5f and 3p orbitals of U and Si atoms at the Fermi energy level, respectively. The formation energy (?U3Si2H) ofU3Si2 at 0 K, after zero point energy correction, have been estimated to be -37.40 kJ/mol. Elastic property calculation of U3Si2 showed mechanical stability and anisotropy at ambient pressure. In addition, the phonon calculation showed that U3Si2 is dynamically unstable. The temperature dependent thermodynamic properties of U3Si2 have also been evaluated using the phonon density of states.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2018-01, Vol.732, p.160
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_1990826545
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Chemical bonds
Density functional theory
Elastic anisotropy
Elastic properties
Electronic structure
Energy levels
Enriched fuel reactors
Intermetallic compounds
Lattice parameters
Light water reactors
Materials elasticity
Mathematical analysis
Mechanical properties
Nuclear fuels
Nuclear reactors
Pressure
Silicon
Spin-orbit interactions
Temperature dependence
Thermodynamic properties
Thermodynamics
Uranium silicide
Vibration
Zero point energy
title Structural, electronic, elastic, vibrational and thermodynamic properties of U^sub 3^Si^sub 2^: A comprehensive study using DFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20electronic,%20elastic,%20vibrational%20and%20thermodynamic%20properties%20of%20U%5Esub%203%5ESi%5Esub%202%5E:%20A%20comprehensive%20study%20using%20DFT&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Chattaraj,%20D&rft.date=2018-01-25&rft.volume=732&rft.spage=160&rft.pages=160-&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/&rft_dat=%3Cproquest%3E1990826545%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990826545&rft_id=info:pmid/&rfr_iscdi=true