Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation

In this paper, soliton perturbation theory is extended to an integrable matrix equation. The explicit forms of the eigenstates and eigenvalues related to the linearized differential operator are found and therefore the first correction to the one soliton solution is established. A good agreement bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2018-01, Vol.76, p.42-50
Hauptverfasser: Ahmadi Zeidabadi, F., Hoseini, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 42
container_title Wave motion
container_volume 76
creator Ahmadi Zeidabadi, F.
Hoseini, S.M.
description In this paper, soliton perturbation theory is extended to an integrable matrix equation. The explicit forms of the eigenstates and eigenvalues related to the linearized differential operator are found and therefore the first correction to the one soliton solution is established. A good agreement between the numerical simulations and analytical results is found. •Using the AKNS procedure, we determine a matrix version of the complex modified KdV equation.•The problem of the nearly integrable equation is transformed to a linearized differential operator.•We solve the later problem by expanding the solution and the source terms in terms of the eigenfunctions of the linearized operator.•The numerical simulations confirm the analytical results.
doi_str_mv 10.1016/j.wavemoti.2017.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990825202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212517301142</els_id><sourcerecordid>1990825202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-da41369a51a13ca42bc7e04a186ee0245704aa7da1566c0649696a9af47dd8e73</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCigS54S1kzjxDVTxJypxoCBulmtvwFVTp477d-MdeEOehLSFM6fVSN_MaIeQcwoJBcovJ8lKLbF2wSYMaJGASADYAenRsijjLE3fDkmvA_OYUZYfk5O2nQB0ZCp6ZPTspja4WdSgDws_VsF2Inyg85uocj6qVfB2HWlXN1NcR7UztrJookfnA67w_fvzy2D06i22Ec4XO_8pOarUtMWz39snL7c3o8F9PHy6exhcD2OdZhBiozKacqFyqmiqVcbGukDIFC05IrAsLzqhCqNozrkGngkuuBKqygpjSizSPrnY5zbezRfYBjlxCz_rKiUVAkqWM2AdxfeU9q5tPVay8bZWfiMpyO2CciL_FpTbBSUICTvj1d6I3Q9Li1622uJMo7EedZDG2f8ifgAQ7H-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990825202</pqid></control><display><type>article</type><title>Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ahmadi Zeidabadi, F. ; Hoseini, S.M.</creator><creatorcontrib>Ahmadi Zeidabadi, F. ; Hoseini, S.M.</creatorcontrib><description>In this paper, soliton perturbation theory is extended to an integrable matrix equation. The explicit forms of the eigenstates and eigenvalues related to the linearized differential operator are found and therefore the first correction to the one soliton solution is established. A good agreement between the numerical simulations and analytical results is found. •Using the AKNS procedure, we determine a matrix version of the complex modified KdV equation.•The problem of the nearly integrable equation is transformed to a linearized differential operator.•We solve the later problem by expanding the solution and the source terms in terms of the eigenfunctions of the linearized operator.•The numerical simulations confirm the analytical results.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2017.09.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Complex modified KdV equation ; Computer simulation ; Continuous and discrete eigenfunctions ; Differential equations ; Eigenvalues ; Integrable matrix equation ; Korteweg-Devries equation ; Numerical analysis ; Perturbation theory ; Soliton perturbation theory ; Studies</subject><ispartof>Wave motion, 2018-01, Vol.76, p.42-50</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-da41369a51a13ca42bc7e04a186ee0245704aa7da1566c0649696a9af47dd8e73</citedby><cites>FETCH-LOGICAL-c340t-da41369a51a13ca42bc7e04a186ee0245704aa7da1566c0649696a9af47dd8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2017.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Ahmadi Zeidabadi, F.</creatorcontrib><creatorcontrib>Hoseini, S.M.</creatorcontrib><title>Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation</title><title>Wave motion</title><description>In this paper, soliton perturbation theory is extended to an integrable matrix equation. The explicit forms of the eigenstates and eigenvalues related to the linearized differential operator are found and therefore the first correction to the one soliton solution is established. A good agreement between the numerical simulations and analytical results is found. •Using the AKNS procedure, we determine a matrix version of the complex modified KdV equation.•The problem of the nearly integrable equation is transformed to a linearized differential operator.•We solve the later problem by expanding the solution and the source terms in terms of the eigenfunctions of the linearized operator.•The numerical simulations confirm the analytical results.</description><subject>Complex modified KdV equation</subject><subject>Computer simulation</subject><subject>Continuous and discrete eigenfunctions</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Integrable matrix equation</subject><subject>Korteweg-Devries equation</subject><subject>Numerical analysis</subject><subject>Perturbation theory</subject><subject>Soliton perturbation theory</subject><subject>Studies</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCigS54S1kzjxDVTxJypxoCBulmtvwFVTp477d-MdeEOehLSFM6fVSN_MaIeQcwoJBcovJ8lKLbF2wSYMaJGASADYAenRsijjLE3fDkmvA_OYUZYfk5O2nQB0ZCp6ZPTspja4WdSgDws_VsF2Inyg85uocj6qVfB2HWlXN1NcR7UztrJookfnA67w_fvzy2D06i22Ec4XO_8pOarUtMWz39snL7c3o8F9PHy6exhcD2OdZhBiozKacqFyqmiqVcbGukDIFC05IrAsLzqhCqNozrkGngkuuBKqygpjSizSPrnY5zbezRfYBjlxCz_rKiUVAkqWM2AdxfeU9q5tPVay8bZWfiMpyO2CciL_FpTbBSUICTvj1d6I3Q9Li1622uJMo7EedZDG2f8ifgAQ7H-o</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Ahmadi Zeidabadi, F.</creator><creator>Hoseini, S.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201801</creationdate><title>Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation</title><author>Ahmadi Zeidabadi, F. ; Hoseini, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-da41369a51a13ca42bc7e04a186ee0245704aa7da1566c0649696a9af47dd8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex modified KdV equation</topic><topic>Computer simulation</topic><topic>Continuous and discrete eigenfunctions</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Integrable matrix equation</topic><topic>Korteweg-Devries equation</topic><topic>Numerical analysis</topic><topic>Perturbation theory</topic><topic>Soliton perturbation theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi Zeidabadi, F.</creatorcontrib><creatorcontrib>Hoseini, S.M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi Zeidabadi, F.</au><au>Hoseini, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation</atitle><jtitle>Wave motion</jtitle><date>2018-01</date><risdate>2018</risdate><volume>76</volume><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>In this paper, soliton perturbation theory is extended to an integrable matrix equation. The explicit forms of the eigenstates and eigenvalues related to the linearized differential operator are found and therefore the first correction to the one soliton solution is established. A good agreement between the numerical simulations and analytical results is found. •Using the AKNS procedure, we determine a matrix version of the complex modified KdV equation.•The problem of the nearly integrable equation is transformed to a linearized differential operator.•We solve the later problem by expanding the solution and the source terms in terms of the eigenfunctions of the linearized operator.•The numerical simulations confirm the analytical results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2017.09.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2018-01, Vol.76, p.42-50
issn 0165-2125
1878-433X
language eng
recordid cdi_proquest_journals_1990825202
source ScienceDirect Journals (5 years ago - present)
subjects Complex modified KdV equation
Computer simulation
Continuous and discrete eigenfunctions
Differential equations
Eigenvalues
Integrable matrix equation
Korteweg-Devries equation
Numerical analysis
Perturbation theory
Soliton perturbation theory
Studies
title Soliton perturbation theory for matrix complex modified Korteweg–de Vries equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20perturbation%20theory%20for%20matrix%20complex%20modified%20Korteweg%E2%80%93de%20Vries%20equation&rft.jtitle=Wave%20motion&rft.au=Ahmadi%C2%A0Zeidabadi,%20F.&rft.date=2018-01&rft.volume=76&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2017.09.002&rft_dat=%3Cproquest_cross%3E1990825202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990825202&rft_id=info:pmid/&rft_els_id=S0165212517301142&rfr_iscdi=true