Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model

Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2017-01, Vol.42 (1), p.407-415
Hauptverfasser: Liang, Lu, Yue, Zhiwei, Du, Wei, Li, Yang, Tao, Hongyan, Wang, Di, Wang, Ran, Huang, Ziwei, He, Ningning, Xie, Xiaoyan, Han, Zhongchao, Liu, Na, Li, Zongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 1
container_start_page 407
container_title Cellular physiology and biochemistry
container_volume 42
creator Liang, Lu
Yue, Zhiwei
Du, Wei
Li, Yang
Tao, Hongyan
Wang, Di
Wang, Ran
Huang, Ziwei
He, Ningning
Xie, Xiaoyan
Han, Zhongchao
Liu, Na
Li, Zongjin
description Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.
doi_str_mv 10.1159/000477485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990816342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea0a8ac86ff54cb99b7abd3c009954f9</doaj_id><sourcerecordid>1990816342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</originalsourceid><addsrcrecordid>eNptkc9rFDEUxwdRbK0evIsEvNTD1GSSTJKjXbbtQkt7qN4kvPwaZp2ZbJMd0P--0d1uQTwlee_D573wrar3BJ8RwtUXjDETgkn-ojomrCG1EkK-LHdMeC2VFEfVm5zXuDyFal5XR43kXNJWHlc_buLg7TxAQqsRun7qUAxoNbnZ9mbw6Pvy8gItf22Sz7mPE4LJoft5jAndpdg9VfvSQOfJQ96iBUzWJ3QTnR_eVq8CDNm_258n1beL5f3iqr6-vVwtvl7XlrV0W5NguMBWtRQM5txyZ5mkVDimHC2NRhETeGiNcIY3JLStAelBEOFN6yijJ9Vq53UR1nqT-hHSbx2h138LMXUa0ra3g9ceMEiwsg2BM2uUMgKMoxZjpTgLqrhOd65Nig-zz1s99tn6YYDJxzlrojBrGFaMFvTTP-g6zmkqPy2UwpK0lDWF-ryjbIo5Jx8OCxKs_-SnD_kV9uPeOJvRuwP5FNjzyJ-QOp8OwOLufKfQGxcK9eG_1H7KI9msqFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990816342</pqid></control><display><type>article</type><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</creator><creatorcontrib>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</creatorcontrib><description>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000477485</identifier><identifier>PMID: 28558368</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Angiogenesis ; Animals ; Antibiotics ; Apoptosis - drug effects ; Bioluminescence ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Disease Models, Animal ; Disease Progression ; Doxycycline - toxicity ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Reporter ; Humans ; Hydrogen Peroxide - toxicity ; Mice ; Mice, Inbred BALB C ; Microscopy, Fluorescence ; Molecular imaging ; Neovascularization, Pathologic - prevention &amp; control ; Optical Imaging ; Original Paper ; Oxidative Stress - drug effects ; Rodents ; Stem cells ; Vascular endothelial growth factor ; Vascular endothelial growth factor (VEGF) ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Cellular physiology and biochemistry, 2017-01, Vol.42 (1), p.407-415</ispartof><rights>2017 The Author(s). Published by S. Karger AG, Basel</rights><rights>2017 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27635,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28558368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Lu</creatorcontrib><creatorcontrib>Yue, Zhiwei</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Tao, Hongyan</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Huang, Ziwei</creatorcontrib><creatorcontrib>He, Ningning</creatorcontrib><creatorcontrib>Xie, Xiaoyan</creatorcontrib><creatorcontrib>Han, Zhongchao</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Li, Zongjin</creatorcontrib><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Apoptosis - drug effects</subject><subject>Bioluminescence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Doxycycline - toxicity</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, Reporter</subject><subject>Humans</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular imaging</subject><subject>Neovascularization, Pathologic - prevention &amp; control</subject><subject>Optical Imaging</subject><subject>Original Paper</subject><subject>Oxidative Stress - drug effects</subject><subject>Rodents</subject><subject>Stem cells</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor (VEGF)</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9rFDEUxwdRbK0evIsEvNTD1GSSTJKjXbbtQkt7qN4kvPwaZp2ZbJMd0P--0d1uQTwlee_D573wrar3BJ8RwtUXjDETgkn-ojomrCG1EkK-LHdMeC2VFEfVm5zXuDyFal5XR43kXNJWHlc_buLg7TxAQqsRun7qUAxoNbnZ9mbw6Pvy8gItf22Sz7mPE4LJoft5jAndpdg9VfvSQOfJQ96iBUzWJ3QTnR_eVq8CDNm_258n1beL5f3iqr6-vVwtvl7XlrV0W5NguMBWtRQM5txyZ5mkVDimHC2NRhETeGiNcIY3JLStAelBEOFN6yijJ9Vq53UR1nqT-hHSbx2h138LMXUa0ra3g9ceMEiwsg2BM2uUMgKMoxZjpTgLqrhOd65Nig-zz1s99tn6YYDJxzlrojBrGFaMFvTTP-g6zmkqPy2UwpK0lDWF-ryjbIo5Jx8OCxKs_-SnD_kV9uPeOJvRuwP5FNjzyJ-QOp8OwOLufKfQGxcK9eG_1H7KI9msqFw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Liang, Lu</creator><creator>Yue, Zhiwei</creator><creator>Du, Wei</creator><creator>Li, Yang</creator><creator>Tao, Hongyan</creator><creator>Wang, Di</creator><creator>Wang, Ran</creator><creator>Huang, Ziwei</creator><creator>He, Ningning</creator><creator>Xie, Xiaoyan</creator><creator>Han, Zhongchao</creator><creator>Liu, Na</creator><creator>Li, Zongjin</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH &amp; Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><author>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Apoptosis - drug effects</topic><topic>Bioluminescence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Doxycycline - toxicity</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, Reporter</topic><topic>Humans</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular imaging</topic><topic>Neovascularization, Pathologic - prevention &amp; control</topic><topic>Optical Imaging</topic><topic>Original Paper</topic><topic>Oxidative Stress - drug effects</topic><topic>Rodents</topic><topic>Stem cells</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor (VEGF)</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Lu</creatorcontrib><creatorcontrib>Yue, Zhiwei</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Tao, Hongyan</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Huang, Ziwei</creatorcontrib><creatorcontrib>He, Ningning</creatorcontrib><creatorcontrib>Xie, Xiaoyan</creatorcontrib><creatorcontrib>Han, Zhongchao</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Li, Zongjin</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Lu</au><au>Yue, Zhiwei</au><au>Du, Wei</au><au>Li, Yang</au><au>Tao, Hongyan</au><au>Wang, Di</au><au>Wang, Ran</au><au>Huang, Ziwei</au><au>He, Ningning</au><au>Xie, Xiaoyan</au><au>Han, Zhongchao</au><au>Liu, Na</au><au>Li, Zongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>42</volume><issue>1</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>28558368</pmid><doi>10.1159/000477485</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8987
ispartof Cellular physiology and biochemistry, 2017-01, Vol.42 (1), p.407-415
issn 1015-8987
1421-9778
language eng
recordid cdi_proquest_journals_1990816342
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access
subjects Angiogenesis
Animals
Antibiotics
Apoptosis - drug effects
Bioluminescence
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Line, Tumor
Cell Proliferation - drug effects
Disease Models, Animal
Disease Progression
Doxycycline - toxicity
Female
Gene Expression Regulation, Neoplastic
Genes, Reporter
Humans
Hydrogen Peroxide - toxicity
Mice
Mice, Inbred BALB C
Microscopy, Fluorescence
Molecular imaging
Neovascularization, Pathologic - prevention & control
Optical Imaging
Original Paper
Oxidative Stress - drug effects
Rodents
Stem cells
Vascular endothelial growth factor
Vascular endothelial growth factor (VEGF)
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
title Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Imaging%20of%20Inducible%20VEGF%20Expression%20and%20Tumor%20Progression%20in%20a%20Breast%20Cancer%20Model&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Liang,%20Lu&rft.date=2017-01-01&rft.volume=42&rft.issue=1&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000477485&rft_dat=%3Cproquest_cross%3E1990816342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990816342&rft_id=info:pmid/28558368&rft_doaj_id=oai_doaj_org_article_ea0a8ac86ff54cb99b7abd3c009954f9&rfr_iscdi=true