Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model
Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrin...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2017-01, Vol.42 (1), p.407-415 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 1 |
container_start_page | 407 |
container_title | Cellular physiology and biochemistry |
container_volume | 42 |
creator | Liang, Lu Yue, Zhiwei Du, Wei Li, Yang Tao, Hongyan Wang, Di Wang, Ran Huang, Ziwei He, Ningning Xie, Xiaoyan Han, Zhongchao Liu, Na Li, Zongjin |
description | Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time. |
doi_str_mv | 10.1159/000477485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990816342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ea0a8ac86ff54cb99b7abd3c009954f9</doaj_id><sourcerecordid>1990816342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</originalsourceid><addsrcrecordid>eNptkc9rFDEUxwdRbK0evIsEvNTD1GSSTJKjXbbtQkt7qN4kvPwaZp2ZbJMd0P--0d1uQTwlee_D573wrar3BJ8RwtUXjDETgkn-ojomrCG1EkK-LHdMeC2VFEfVm5zXuDyFal5XR43kXNJWHlc_buLg7TxAQqsRun7qUAxoNbnZ9mbw6Pvy8gItf22Sz7mPE4LJoft5jAndpdg9VfvSQOfJQ96iBUzWJ3QTnR_eVq8CDNm_258n1beL5f3iqr6-vVwtvl7XlrV0W5NguMBWtRQM5txyZ5mkVDimHC2NRhETeGiNcIY3JLStAelBEOFN6yijJ9Vq53UR1nqT-hHSbx2h138LMXUa0ra3g9ceMEiwsg2BM2uUMgKMoxZjpTgLqrhOd65Nig-zz1s99tn6YYDJxzlrojBrGFaMFvTTP-g6zmkqPy2UwpK0lDWF-ryjbIo5Jx8OCxKs_-SnD_kV9uPeOJvRuwP5FNjzyJ-QOp8OwOLufKfQGxcK9eG_1H7KI9msqFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990816342</pqid></control><display><type>article</type><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Karger Open Access</source><creator>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</creator><creatorcontrib>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</creatorcontrib><description>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000477485</identifier><identifier>PMID: 28558368</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Angiogenesis ; Animals ; Antibiotics ; Apoptosis - drug effects ; Bioluminescence ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Disease Models, Animal ; Disease Progression ; Doxycycline - toxicity ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Reporter ; Humans ; Hydrogen Peroxide - toxicity ; Mice ; Mice, Inbred BALB C ; Microscopy, Fluorescence ; Molecular imaging ; Neovascularization, Pathologic - prevention & control ; Optical Imaging ; Original Paper ; Oxidative Stress - drug effects ; Rodents ; Stem cells ; Vascular endothelial growth factor ; Vascular endothelial growth factor (VEGF) ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Cellular physiology and biochemistry, 2017-01, Vol.42 (1), p.407-415</ispartof><rights>2017 The Author(s). Published by S. Karger AG, Basel</rights><rights>2017 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27635,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28558368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Lu</creatorcontrib><creatorcontrib>Yue, Zhiwei</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Tao, Hongyan</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Huang, Ziwei</creatorcontrib><creatorcontrib>He, Ningning</creatorcontrib><creatorcontrib>Xie, Xiaoyan</creatorcontrib><creatorcontrib>Han, Zhongchao</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Li, Zongjin</creatorcontrib><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Apoptosis - drug effects</subject><subject>Bioluminescence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Doxycycline - toxicity</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, Reporter</subject><subject>Humans</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular imaging</subject><subject>Neovascularization, Pathologic - prevention & control</subject><subject>Optical Imaging</subject><subject>Original Paper</subject><subject>Oxidative Stress - drug effects</subject><subject>Rodents</subject><subject>Stem cells</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor (VEGF)</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9rFDEUxwdRbK0evIsEvNTD1GSSTJKjXbbtQkt7qN4kvPwaZp2ZbJMd0P--0d1uQTwlee_D573wrar3BJ8RwtUXjDETgkn-ojomrCG1EkK-LHdMeC2VFEfVm5zXuDyFal5XR43kXNJWHlc_buLg7TxAQqsRun7qUAxoNbnZ9mbw6Pvy8gItf22Sz7mPE4LJoft5jAndpdg9VfvSQOfJQ96iBUzWJ3QTnR_eVq8CDNm_258n1beL5f3iqr6-vVwtvl7XlrV0W5NguMBWtRQM5txyZ5mkVDimHC2NRhETeGiNcIY3JLStAelBEOFN6yijJ9Vq53UR1nqT-hHSbx2h138LMXUa0ra3g9ceMEiwsg2BM2uUMgKMoxZjpTgLqrhOd65Nig-zz1s99tn6YYDJxzlrojBrGFaMFvTTP-g6zmkqPy2UwpK0lDWF-ryjbIo5Jx8OCxKs_-SnD_kV9uPeOJvRuwP5FNjzyJ-QOp8OwOLufKfQGxcK9eG_1H7KI9msqFw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Liang, Lu</creator><creator>Yue, Zhiwei</creator><creator>Du, Wei</creator><creator>Li, Yang</creator><creator>Tao, Hongyan</creator><creator>Wang, Di</creator><creator>Wang, Ran</creator><creator>Huang, Ziwei</creator><creator>He, Ningning</creator><creator>Xie, Xiaoyan</creator><creator>Han, Zhongchao</creator><creator>Liu, Na</creator><creator>Li, Zongjin</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH & Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</title><author>Liang, Lu ; Yue, Zhiwei ; Du, Wei ; Li, Yang ; Tao, Hongyan ; Wang, Di ; Wang, Ran ; Huang, Ziwei ; He, Ningning ; Xie, Xiaoyan ; Han, Zhongchao ; Liu, Na ; Li, Zongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1fb570c963ab055c5dc48337d49d370c291bf5f6b7db521f66ba8ea717eb6d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Apoptosis - drug effects</topic><topic>Bioluminescence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Doxycycline - toxicity</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, Reporter</topic><topic>Humans</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular imaging</topic><topic>Neovascularization, Pathologic - prevention & control</topic><topic>Optical Imaging</topic><topic>Original Paper</topic><topic>Oxidative Stress - drug effects</topic><topic>Rodents</topic><topic>Stem cells</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor (VEGF)</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Lu</creatorcontrib><creatorcontrib>Yue, Zhiwei</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Tao, Hongyan</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Huang, Ziwei</creatorcontrib><creatorcontrib>He, Ningning</creatorcontrib><creatorcontrib>Xie, Xiaoyan</creatorcontrib><creatorcontrib>Han, Zhongchao</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Li, Zongjin</creatorcontrib><collection>Karger Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Lu</au><au>Yue, Zhiwei</au><au>Du, Wei</au><au>Li, Yang</au><au>Tao, Hongyan</au><au>Wang, Di</au><au>Wang, Ran</au><au>Huang, Ziwei</au><au>He, Ningning</au><au>Xie, Xiaoyan</au><au>Han, Zhongchao</au><au>Liu, Na</au><au>Li, Zongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>42</volume><issue>1</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Background: Tumor derived vascular endothelial growth factor (VEGF) can stimulate proliferation and migration of endothelial cells and recruit endothelial progenitor cells into tumors for vascular formation via a paracrine manner. Now increasing evidence suggests that VEGF also serves as an autocrine factor promoting cell survival and tumor angiogenesis. Real time visualization of VEGF activity in the early stages of tumor formation using molecular imaging will provide unprecedented insight into the biological processes of cancer. Methods: The mouse breast cancer cell line 4T1 was transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF and renilla luciferase (Rluc). This was used to quantitatively image conditional switching of VEGF by bioluminescence imaging (BLI) under the control of systemic administration of doxycycline. Simultaneously, 4T1 cells were labelled with the double fusion reporter gene (Fluc-eGFP) to establish a breast cancer model. Results: We found that inducible VEGF could promote proliferation and attenuate apoptosis due to oxidative stress in an autocrine manner in vitro. In vivo studies revealed that induction of VEGF expression during early tumor development not only dramatically enhanced tumor growth but also increased tumor angiogenesis as visualized by BLI. Finally, immunohistochemistry staining confirmed that inducing VEGF expression promoted cell survival and tumor neovascularization. Conclusion: Together the inducible bidirectional tetracycline (Bi-Tet) co-expression system combined with the dual bioluminescence imaging (BLI) system provides a platform to investigate a target gene’s role in the pathologic process of cancer and facilitates noninvasive monitoring of biological responses in real time.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>28558368</pmid><doi>10.1159/000477485</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8987 |
ispartof | Cellular physiology and biochemistry, 2017-01, Vol.42 (1), p.407-415 |
issn | 1015-8987 1421-9778 |
language | eng |
recordid | cdi_proquest_journals_1990816342 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Karger Open Access |
subjects | Angiogenesis Animals Antibiotics Apoptosis - drug effects Bioluminescence Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Line, Tumor Cell Proliferation - drug effects Disease Models, Animal Disease Progression Doxycycline - toxicity Female Gene Expression Regulation, Neoplastic Genes, Reporter Humans Hydrogen Peroxide - toxicity Mice Mice, Inbred BALB C Microscopy, Fluorescence Molecular imaging Neovascularization, Pathologic - prevention & control Optical Imaging Original Paper Oxidative Stress - drug effects Rodents Stem cells Vascular endothelial growth factor Vascular endothelial growth factor (VEGF) Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism |
title | Molecular Imaging of Inducible VEGF Expression and Tumor Progression in a Breast Cancer Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Imaging%20of%20Inducible%20VEGF%20Expression%20and%20Tumor%20Progression%20in%20a%20Breast%20Cancer%20Model&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Liang,%20Lu&rft.date=2017-01-01&rft.volume=42&rft.issue=1&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000477485&rft_dat=%3Cproquest_cross%3E1990816342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990816342&rft_id=info:pmid/28558368&rft_doaj_id=oai_doaj_org_article_ea0a8ac86ff54cb99b7abd3c009954f9&rfr_iscdi=true |