Level set shape and topology optimization of finite strain bilateral contact problems

Summary This paper presents a method for the optimization of multicomponent structures comprised of 2 and 3 materials considering large motion sliding contact and separation along interfaces. The structural geometry is defined by an explicit level set method, which allows for both shape and topology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2018-02, Vol.113 (8), p.1340-1369
Hauptverfasser: Lawry, Matthew, Maute, Kurt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1369
container_issue 8
container_start_page 1340
container_title International journal for numerical methods in engineering
container_volume 113
creator Lawry, Matthew
Maute, Kurt
description Summary This paper presents a method for the optimization of multicomponent structures comprised of 2 and 3 materials considering large motion sliding contact and separation along interfaces. The structural geometry is defined by an explicit level set method, which allows for both shape and topology changes. The mechanical model assumes finite strains, a nonlinear elastic material behavior, and a quasi‐static response. Identification of overlapping surface position is handled by a coupled parametric representation of contact surfaces. A stabilized Lagrange method and an active set strategy are used to model frictionless contact and separation. The mechanical model is discretized by the extended FEM, which maintains a clear definition of geometry. Face‐oriented ghost penalization and dynamic relaxation are implemented to improve the stability of the physical response prediction. A nonlinear programming scheme is used to solve the optimization problem, which is regularized by introducing a perimeter penalty into the objective function. Design sensitivities are determined by the adjoint method. The main characteristics of the proposed method are studied by numerical examples in 2 dimensions. The numerical results demonstrate improved design performance when compared to models optimized with a small strain assumption. Additionally, examples with load path dependent objectives display nonintuitive designs.
doi_str_mv 10.1002/nme.5582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990763262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990763262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3592-321adc2ed6207241e70fe382ec261c5602f479aade6b2505e63a578368aaa7f3</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPwESywsKf6onWREVfmQAixltq7OBVwlcbBdUPn1pJSV6YZ7dO_pJeSSsxlnTNz0Hc6UKsQRmXBW5hkTLD8mk3FVZqos-Ck5i3HDGOeKyQl5rfATWxox0fgOA1Loa5r84Fv_tqN-SK5z35Cc76lvaON6l5DGFMD1dO1aSBigpdb3CWyiQ_DrFrt4Tk4aaCNe_M0pWd0tV4uHrHq5f1zcVpmVqhSZFBxqK7DW45NizjFnDcpCoBWaW6WZaOZ5CVCjXgvFFGoJKi-kLgAgb-SUXB3OjrkfW4zJbPw29GOi4WXJci2FFqO6PigbfIwBGzME10HYGc7MvjMzdmb2nY00O9Av1-LuX2een5a__gdA822Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990763262</pqid></control><display><type>article</type><title>Level set shape and topology optimization of finite strain bilateral contact problems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lawry, Matthew ; Maute, Kurt</creator><creatorcontrib>Lawry, Matthew ; Maute, Kurt</creatorcontrib><description>Summary This paper presents a method for the optimization of multicomponent structures comprised of 2 and 3 materials considering large motion sliding contact and separation along interfaces. The structural geometry is defined by an explicit level set method, which allows for both shape and topology changes. The mechanical model assumes finite strains, a nonlinear elastic material behavior, and a quasi‐static response. Identification of overlapping surface position is handled by a coupled parametric representation of contact surfaces. A stabilized Lagrange method and an active set strategy are used to model frictionless contact and separation. The mechanical model is discretized by the extended FEM, which maintains a clear definition of geometry. Face‐oriented ghost penalization and dynamic relaxation are implemented to improve the stability of the physical response prediction. A nonlinear programming scheme is used to solve the optimization problem, which is regularized by introducing a perimeter penalty into the objective function. Design sensitivities are determined by the adjoint method. The main characteristics of the proposed method are studied by numerical examples in 2 dimensions. The numerical results demonstrate improved design performance when compared to models optimized with a small strain assumption. Additionally, examples with load path dependent objectives display nonintuitive designs.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5582</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Design optimization ; Dynamic stability ; extended finite element method ; Finite element method ; finite strain ; Frictionless contact ; level set methods ; Mathematical models ; Nonlinear programming ; Nonlinear response ; Separation ; Sliding contact ; stabilized lagrange multiplier method ; Topology optimization ; Two dimensional models</subject><ispartof>International journal for numerical methods in engineering, 2018-02, Vol.113 (8), p.1340-1369</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3592-321adc2ed6207241e70fe382ec261c5602f479aade6b2505e63a578368aaa7f3</citedby><cites>FETCH-LOGICAL-c3592-321adc2ed6207241e70fe382ec261c5602f479aade6b2505e63a578368aaa7f3</cites><orcidid>0000-0003-3660-8395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5582$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5582$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lawry, Matthew</creatorcontrib><creatorcontrib>Maute, Kurt</creatorcontrib><title>Level set shape and topology optimization of finite strain bilateral contact problems</title><title>International journal for numerical methods in engineering</title><description>Summary This paper presents a method for the optimization of multicomponent structures comprised of 2 and 3 materials considering large motion sliding contact and separation along interfaces. The structural geometry is defined by an explicit level set method, which allows for both shape and topology changes. The mechanical model assumes finite strains, a nonlinear elastic material behavior, and a quasi‐static response. Identification of overlapping surface position is handled by a coupled parametric representation of contact surfaces. A stabilized Lagrange method and an active set strategy are used to model frictionless contact and separation. The mechanical model is discretized by the extended FEM, which maintains a clear definition of geometry. Face‐oriented ghost penalization and dynamic relaxation are implemented to improve the stability of the physical response prediction. A nonlinear programming scheme is used to solve the optimization problem, which is regularized by introducing a perimeter penalty into the objective function. Design sensitivities are determined by the adjoint method. The main characteristics of the proposed method are studied by numerical examples in 2 dimensions. The numerical results demonstrate improved design performance when compared to models optimized with a small strain assumption. Additionally, examples with load path dependent objectives display nonintuitive designs.</description><subject>Design optimization</subject><subject>Dynamic stability</subject><subject>extended finite element method</subject><subject>Finite element method</subject><subject>finite strain</subject><subject>Frictionless contact</subject><subject>level set methods</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Nonlinear response</subject><subject>Separation</subject><subject>Sliding contact</subject><subject>stabilized lagrange multiplier method</subject><subject>Topology optimization</subject><subject>Two dimensional models</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPwESywsKf6onWREVfmQAixltq7OBVwlcbBdUPn1pJSV6YZ7dO_pJeSSsxlnTNz0Hc6UKsQRmXBW5hkTLD8mk3FVZqos-Ck5i3HDGOeKyQl5rfATWxox0fgOA1Loa5r84Fv_tqN-SK5z35Cc76lvaON6l5DGFMD1dO1aSBigpdb3CWyiQ_DrFrt4Tk4aaCNe_M0pWd0tV4uHrHq5f1zcVpmVqhSZFBxqK7DW45NizjFnDcpCoBWaW6WZaOZ5CVCjXgvFFGoJKi-kLgAgb-SUXB3OjrkfW4zJbPw29GOi4WXJci2FFqO6PigbfIwBGzME10HYGc7MvjMzdmb2nY00O9Av1-LuX2een5a__gdA822Q</recordid><startdate>20180224</startdate><enddate>20180224</enddate><creator>Lawry, Matthew</creator><creator>Maute, Kurt</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3660-8395</orcidid></search><sort><creationdate>20180224</creationdate><title>Level set shape and topology optimization of finite strain bilateral contact problems</title><author>Lawry, Matthew ; Maute, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3592-321adc2ed6207241e70fe382ec261c5602f479aade6b2505e63a578368aaa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design optimization</topic><topic>Dynamic stability</topic><topic>extended finite element method</topic><topic>Finite element method</topic><topic>finite strain</topic><topic>Frictionless contact</topic><topic>level set methods</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Nonlinear response</topic><topic>Separation</topic><topic>Sliding contact</topic><topic>stabilized lagrange multiplier method</topic><topic>Topology optimization</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawry, Matthew</creatorcontrib><creatorcontrib>Maute, Kurt</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawry, Matthew</au><au>Maute, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level set shape and topology optimization of finite strain bilateral contact problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-02-24</date><risdate>2018</risdate><volume>113</volume><issue>8</issue><spage>1340</spage><epage>1369</epage><pages>1340-1369</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary This paper presents a method for the optimization of multicomponent structures comprised of 2 and 3 materials considering large motion sliding contact and separation along interfaces. The structural geometry is defined by an explicit level set method, which allows for both shape and topology changes. The mechanical model assumes finite strains, a nonlinear elastic material behavior, and a quasi‐static response. Identification of overlapping surface position is handled by a coupled parametric representation of contact surfaces. A stabilized Lagrange method and an active set strategy are used to model frictionless contact and separation. The mechanical model is discretized by the extended FEM, which maintains a clear definition of geometry. Face‐oriented ghost penalization and dynamic relaxation are implemented to improve the stability of the physical response prediction. A nonlinear programming scheme is used to solve the optimization problem, which is regularized by introducing a perimeter penalty into the objective function. Design sensitivities are determined by the adjoint method. The main characteristics of the proposed method are studied by numerical examples in 2 dimensions. The numerical results demonstrate improved design performance when compared to models optimized with a small strain assumption. Additionally, examples with load path dependent objectives display nonintuitive designs.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5582</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3660-8395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2018-02, Vol.113 (8), p.1340-1369
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_1990763262
source Wiley Online Library - AutoHoldings Journals
subjects Design optimization
Dynamic stability
extended finite element method
Finite element method
finite strain
Frictionless contact
level set methods
Mathematical models
Nonlinear programming
Nonlinear response
Separation
Sliding contact
stabilized lagrange multiplier method
Topology optimization
Two dimensional models
title Level set shape and topology optimization of finite strain bilateral contact problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20set%20shape%20and%20topology%20optimization%20of%20finite%20strain%20bilateral%20contact%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lawry,%20Matthew&rft.date=2018-02-24&rft.volume=113&rft.issue=8&rft.spage=1340&rft.epage=1369&rft.pages=1340-1369&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5582&rft_dat=%3Cproquest_cross%3E1990763262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990763262&rft_id=info:pmid/&rfr_iscdi=true