Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering

Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2018-01, Vol.530 (1), p.n/a
Hauptverfasser: Yang, Jianji, Sell, David, Fan, Jonathan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Annalen der Physik
container_volume 530
creator Yang, Jianji
Sell, David
Fan, Jonathan A.
description Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produce devices that possess exceptionally high efficiencies. In this report, we theoretically analyze the physical mechanisms enabling high efficiency in freeform‐based periodic metasurfaces, i.e., metagratings. An in‐depth coupled mode analysis of ultra‐wide‐angle beam deflectors and wavelength splitters shows that the extraordinary performance of these designs originates from the large number of propagating modes supported by the metagrating, in combination with complex multiple scattering dynamics exhibited by these modes. We also apply our coupled mode analysis to conventional nanowaveguide‐based metagratings to understand and quantify the factors limiting the efficiencies of these devices. We envision that freeform metasurface design methods will open new avenues towards high‐performance, multi‐functional optics by utilizing strongly coupled nanophotonic modes and elements. Conventional optical metasurfaces utilize sub‐λ nanoscatterers to specify spatially‐dependent amplitude and phase responses. An alternative design strategy is based on freeform inverse optimization, where wavelength‐scale elements are designed to produce devices that possess ultra‐high efficiencies. The mechanisms of high‐efficiency freeform metasurfaces are analyzed here. A coupled mode analysis shows that the extraordinary performance of these designs originates from the large number of propagating modes and their complex multiple scattering dynamics.
doi_str_mv 10.1002/andp.201700302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1990478837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990478837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-c55bf9f407b2a75aa2bf250f8c2b4f80d8f86f848bcea2438878c0f0f6962b0d3</originalsourceid><addsrcrecordid>eNqFkElPwzAQRi0EEhX0ytkSV1LGTtI4x64UqSxS4Ww5zrikNAt2Kpp_j0sRHDl5PHpvRvMRcsVgwAD4raryZsCBJQAh8BPSYzFnQShEekp64Ju-huic9J3b-C_EwIFHPfI-t4imtiV9wFatrWqLau3oWDnMaV3RSV02W9zTZbF-a-lKq7ZF6xE67SpVFtpRL9PZvrVY4g1deIzOjCl0gZXu6BhVSVctfjuX5MyorcP-z3tBXuezl8kiWD7d3U9Gy0CHLOGBjuPMpCaCJOMqiZXimeExGKF5FhkBuTBiaEQkMo2KR_7GRGgwYIbpkGeQhxfk-ji3sfXHDl0rN_XOVn6lZGkKUSJEmHhqcKS0rZ2zaGRji1LZTjKQh0zlIVP5m6kX0qPwWWyx-4eWo8fp85_7BXwTeuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990478837</pqid></control><display><type>article</type><title>Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Jianji ; Sell, David ; Fan, Jonathan A.</creator><creatorcontrib>Yang, Jianji ; Sell, David ; Fan, Jonathan A.</creatorcontrib><description>Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produce devices that possess exceptionally high efficiencies. In this report, we theoretically analyze the physical mechanisms enabling high efficiency in freeform‐based periodic metasurfaces, i.e., metagratings. An in‐depth coupled mode analysis of ultra‐wide‐angle beam deflectors and wavelength splitters shows that the extraordinary performance of these designs originates from the large number of propagating modes supported by the metagrating, in combination with complex multiple scattering dynamics exhibited by these modes. We also apply our coupled mode analysis to conventional nanowaveguide‐based metagratings to understand and quantify the factors limiting the efficiencies of these devices. We envision that freeform metasurface design methods will open new avenues towards high‐performance, multi‐functional optics by utilizing strongly coupled nanophotonic modes and elements. Conventional optical metasurfaces utilize sub‐λ nanoscatterers to specify spatially‐dependent amplitude and phase responses. An alternative design strategy is based on freeform inverse optimization, where wavelength‐scale elements are designed to produce devices that possess ultra‐high efficiencies. The mechanisms of high‐efficiency freeform metasurfaces are analyzed here. A coupled mode analysis shows that the extraordinary performance of these designs originates from the large number of propagating modes and their complex multiple scattering dynamics.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201700302</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Beam steering ; Coupled modes ; coupled nanostructure ; Deflectors ; Design ; inverse design ; metamaterials ; metasurfaces ; modal analysis ; Propagation modes ; Scattering</subject><ispartof>Annalen der Physik, 2018-01, Vol.530 (1), p.n/a</ispartof><rights>2017 by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-c55bf9f407b2a75aa2bf250f8c2b4f80d8f86f848bcea2438878c0f0f6962b0d3</citedby><cites>FETCH-LOGICAL-c3172-c55bf9f407b2a75aa2bf250f8c2b4f80d8f86f848bcea2438878c0f0f6962b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201700302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201700302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Jianji</creatorcontrib><creatorcontrib>Sell, David</creatorcontrib><creatorcontrib>Fan, Jonathan A.</creatorcontrib><title>Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering</title><title>Annalen der Physik</title><description>Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produce devices that possess exceptionally high efficiencies. In this report, we theoretically analyze the physical mechanisms enabling high efficiency in freeform‐based periodic metasurfaces, i.e., metagratings. An in‐depth coupled mode analysis of ultra‐wide‐angle beam deflectors and wavelength splitters shows that the extraordinary performance of these designs originates from the large number of propagating modes supported by the metagrating, in combination with complex multiple scattering dynamics exhibited by these modes. We also apply our coupled mode analysis to conventional nanowaveguide‐based metagratings to understand and quantify the factors limiting the efficiencies of these devices. We envision that freeform metasurface design methods will open new avenues towards high‐performance, multi‐functional optics by utilizing strongly coupled nanophotonic modes and elements. Conventional optical metasurfaces utilize sub‐λ nanoscatterers to specify spatially‐dependent amplitude and phase responses. An alternative design strategy is based on freeform inverse optimization, where wavelength‐scale elements are designed to produce devices that possess ultra‐high efficiencies. The mechanisms of high‐efficiency freeform metasurfaces are analyzed here. A coupled mode analysis shows that the extraordinary performance of these designs originates from the large number of propagating modes and their complex multiple scattering dynamics.</description><subject>Beam steering</subject><subject>Coupled modes</subject><subject>coupled nanostructure</subject><subject>Deflectors</subject><subject>Design</subject><subject>inverse design</subject><subject>metamaterials</subject><subject>metasurfaces</subject><subject>modal analysis</subject><subject>Propagation modes</subject><subject>Scattering</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQRi0EEhX0ytkSV1LGTtI4x64UqSxS4Ww5zrikNAt2Kpp_j0sRHDl5PHpvRvMRcsVgwAD4raryZsCBJQAh8BPSYzFnQShEekp64Ju-huic9J3b-C_EwIFHPfI-t4imtiV9wFatrWqLau3oWDnMaV3RSV02W9zTZbF-a-lKq7ZF6xE67SpVFtpRL9PZvrVY4g1deIzOjCl0gZXu6BhVSVctfjuX5MyorcP-z3tBXuezl8kiWD7d3U9Gy0CHLOGBjuPMpCaCJOMqiZXimeExGKF5FhkBuTBiaEQkMo2KR_7GRGgwYIbpkGeQhxfk-ji3sfXHDl0rN_XOVn6lZGkKUSJEmHhqcKS0rZ2zaGRji1LZTjKQh0zlIVP5m6kX0qPwWWyx-4eWo8fp85_7BXwTeuo</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Yang, Jianji</creator><creator>Sell, David</creator><creator>Fan, Jonathan A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201801</creationdate><title>Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering</title><author>Yang, Jianji ; Sell, David ; Fan, Jonathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-c55bf9f407b2a75aa2bf250f8c2b4f80d8f86f848bcea2438878c0f0f6962b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beam steering</topic><topic>Coupled modes</topic><topic>coupled nanostructure</topic><topic>Deflectors</topic><topic>Design</topic><topic>inverse design</topic><topic>metamaterials</topic><topic>metasurfaces</topic><topic>modal analysis</topic><topic>Propagation modes</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianji</creatorcontrib><creatorcontrib>Sell, David</creatorcontrib><creatorcontrib>Fan, Jonathan A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianji</au><au>Sell, David</au><au>Fan, Jonathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering</atitle><jtitle>Annalen der Physik</jtitle><date>2018-01</date><risdate>2018</risdate><volume>530</volume><issue>1</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>Conventional phased‐array metasurfaces utilize subwavelength‐scale nanoparticles or nanowaveguides to specify spatially‐dependent amplitude and phase responses to light. An alternative design strategy is based on freeform inverse optimization, in which wavelength‐scale elements are designed to produce devices that possess exceptionally high efficiencies. In this report, we theoretically analyze the physical mechanisms enabling high efficiency in freeform‐based periodic metasurfaces, i.e., metagratings. An in‐depth coupled mode analysis of ultra‐wide‐angle beam deflectors and wavelength splitters shows that the extraordinary performance of these designs originates from the large number of propagating modes supported by the metagrating, in combination with complex multiple scattering dynamics exhibited by these modes. We also apply our coupled mode analysis to conventional nanowaveguide‐based metagratings to understand and quantify the factors limiting the efficiencies of these devices. We envision that freeform metasurface design methods will open new avenues towards high‐performance, multi‐functional optics by utilizing strongly coupled nanophotonic modes and elements. Conventional optical metasurfaces utilize sub‐λ nanoscatterers to specify spatially‐dependent amplitude and phase responses. An alternative design strategy is based on freeform inverse optimization, where wavelength‐scale elements are designed to produce devices that possess ultra‐high efficiencies. The mechanisms of high‐efficiency freeform metasurfaces are analyzed here. A coupled mode analysis shows that the extraordinary performance of these designs originates from the large number of propagating modes and their complex multiple scattering dynamics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201700302</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2018-01, Vol.530 (1), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_1990478837
source Wiley Online Library Journals Frontfile Complete
subjects Beam steering
Coupled modes
coupled nanostructure
Deflectors
Design
inverse design
metamaterials
metasurfaces
modal analysis
Propagation modes
Scattering
title Freeform Metagratings Based on Complex Light Scattering Dynamics for Extreme, High Efficiency Beam Steering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeform%20Metagratings%20Based%20on%20Complex%20Light%20Scattering%20Dynamics%20for%20Extreme,%20High%20Efficiency%20Beam%20Steering&rft.jtitle=Annalen%20der%20Physik&rft.au=Yang,%20Jianji&rft.date=2018-01&rft.volume=530&rft.issue=1&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201700302&rft_dat=%3Cproquest_cross%3E1990478837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990478837&rft_id=info:pmid/&rfr_iscdi=true