LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND

We consider the one-dimensional symmetric simple exclusion process with a slow bond. In this model, whilst all the transition rates are equal to one, a particular bond, the slow bond, has associated transition rate of value N−1, where N is the scaling parameter. This model has been considered in pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2017-12, Vol.27 (6), p.3547-3587
Hauptverfasser: Franco, Tertuliano, Neumann, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3587
container_issue 6
container_start_page 3547
container_title The Annals of applied probability
container_volume 27
creator Franco, Tertuliano
Neumann, Adriana
description We consider the one-dimensional symmetric simple exclusion process with a slow bond. In this model, whilst all the transition rates are equal to one, a particular bond, the slow bond, has associated transition rate of value N−1, where N is the scaling parameter. This model has been considered in previous works on the subject of hydrodynamic limit and fluctuations. In this paper, assuming uniqueness for weak solutions of hydrodynamic equation associated to the perturbed process, we obtain dynamical large deviations estimates in the diffusive scaling. The main challenge here is the fact that the presence of the slow bond gives rise to Robin's boundary conditions in the continuum, substantially complicating the large deviations scenario.
doi_str_mv 10.1214/17-AAP1287
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1990371835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26361450</jstor_id><sourcerecordid>26361450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-73c9e0f9a92c16fbd58ed6c25ea4d7e02ae6c4cc26cce55868027c0c4d89f7783</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QnTvvwVVM0zYQmtKk1l2IkwlY1NSZduG_N1JxdeDwcS8chK6B3AMF_gAqiuMlUK1O0IiC1JFWTJ2iERBBIgGSn6OLELaEEMONGqHHPF7NUjxJn7O4yopFiafFClfzFKcvSb4uhwovV0WSliXeZNUcx7jMiw1-KhaTS3TWNe_BXf3lGK2naZXMo7yYZUmcR5Zq2EeKWeNIZxpDLcjutRXatdJS4RreKkdo46Tl1lJprRNCS02ossTyVptOKc3G6PZ4d-f7r4ML-3rbH_zn8LIGYwhToJkY1N1RWd-H4F1X7_zbR-O_ayD17zg1qPpvnAHfHPE27Hv_L6lkErgg7Ae83Fmm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990371835</pqid></control><display><type>article</type><title>LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Franco, Tertuliano ; Neumann, Adriana</creator><creatorcontrib>Franco, Tertuliano ; Neumann, Adriana</creatorcontrib><description>We consider the one-dimensional symmetric simple exclusion process with a slow bond. In this model, whilst all the transition rates are equal to one, a particular bond, the slow bond, has associated transition rate of value N−1, where N is the scaling parameter. This model has been considered in previous works on the subject of hydrodynamic limit and fluctuations. In this paper, assuming uniqueness for weak solutions of hydrodynamic equation associated to the perturbed process, we obtain dynamical large deviations estimates in the diffusive scaling. The main challenge here is the fact that the presence of the slow bond gives rise to Robin's boundary conditions in the continuum, substantially complicating the large deviations scenario.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/17-AAP1287</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Boundary conditions ; Fluid mechanics ; Hydrodynamic equations ; Probability ; Scaling ; Variations</subject><ispartof>The Annals of applied probability, 2017-12, Vol.27 (6), p.3547-3587</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-73c9e0f9a92c16fbd58ed6c25ea4d7e02ae6c4cc26cce55868027c0c4d89f7783</citedby><cites>FETCH-LOGICAL-c281t-73c9e0f9a92c16fbd58ed6c25ea4d7e02ae6c4cc26cce55868027c0c4d89f7783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26361450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26361450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Neumann, Adriana</creatorcontrib><title>LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND</title><title>The Annals of applied probability</title><description>We consider the one-dimensional symmetric simple exclusion process with a slow bond. In this model, whilst all the transition rates are equal to one, a particular bond, the slow bond, has associated transition rate of value N−1, where N is the scaling parameter. This model has been considered in previous works on the subject of hydrodynamic limit and fluctuations. In this paper, assuming uniqueness for weak solutions of hydrodynamic equation associated to the perturbed process, we obtain dynamical large deviations estimates in the diffusive scaling. The main challenge here is the fact that the presence of the slow bond gives rise to Robin's boundary conditions in the continuum, substantially complicating the large deviations scenario.</description><subject>Boundary conditions</subject><subject>Fluid mechanics</subject><subject>Hydrodynamic equations</subject><subject>Probability</subject><subject>Scaling</subject><subject>Variations</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AUBeBBFKzVjXthwJ0QnTvvwVVM0zYQmtKk1l2IkwlY1NSZduG_N1JxdeDwcS8chK6B3AMF_gAqiuMlUK1O0IiC1JFWTJ2iERBBIgGSn6OLELaEEMONGqHHPF7NUjxJn7O4yopFiafFClfzFKcvSb4uhwovV0WSliXeZNUcx7jMiw1-KhaTS3TWNe_BXf3lGK2naZXMo7yYZUmcR5Zq2EeKWeNIZxpDLcjutRXatdJS4RreKkdo46Tl1lJprRNCS02ossTyVptOKc3G6PZ4d-f7r4ML-3rbH_zn8LIGYwhToJkY1N1RWd-H4F1X7_zbR-O_ayD17zg1qPpvnAHfHPE27Hv_L6lkErgg7Ae83Fmm</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Franco, Tertuliano</creator><creator>Neumann, Adriana</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171201</creationdate><title>LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND</title><author>Franco, Tertuliano ; Neumann, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-73c9e0f9a92c16fbd58ed6c25ea4d7e02ae6c4cc26cce55868027c0c4d89f7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Fluid mechanics</topic><topic>Hydrodynamic equations</topic><topic>Probability</topic><topic>Scaling</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Neumann, Adriana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Tertuliano</au><au>Neumann, Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND</atitle><jtitle>The Annals of applied probability</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>27</volume><issue>6</issue><spage>3547</spage><epage>3587</epage><pages>3547-3587</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider the one-dimensional symmetric simple exclusion process with a slow bond. In this model, whilst all the transition rates are equal to one, a particular bond, the slow bond, has associated transition rate of value N−1, where N is the scaling parameter. This model has been considered in previous works on the subject of hydrodynamic limit and fluctuations. In this paper, assuming uniqueness for weak solutions of hydrodynamic equation associated to the perturbed process, we obtain dynamical large deviations estimates in the diffusive scaling. The main challenge here is the fact that the presence of the slow bond gives rise to Robin's boundary conditions in the continuum, substantially complicating the large deviations scenario.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/17-AAP1287</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2017-12, Vol.27 (6), p.3547-3587
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_1990371835
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Boundary conditions
Fluid mechanics
Hydrodynamic equations
Probability
Scaling
Variations
title LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LARGE%20DEVIATIONS%20FOR%20THE%20EXCLUSION%20PROCESS%20WITH%20A%20SLOW%20BOND&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Franco,%20Tertuliano&rft.date=2017-12-01&rft.volume=27&rft.issue=6&rft.spage=3547&rft.epage=3587&rft.pages=3547-3587&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/17-AAP1287&rft_dat=%3Cjstor_proqu%3E26361450%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990371835&rft_id=info:pmid/&rft_jstor_id=26361450&rfr_iscdi=true