Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition

We investigate the following nonlinear Neumann boundary-value problem with associated p(x)-Laplace-type operator where the function φ(x, v) is of type |v|p(x)−2 v with continuous function p: → (1,∞) and both f : Ω × ℝ → ℝ and g : ∂Ω × ℝ → ℝ satisfy a Carathéodory condition. We first show the existen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2018-02, Vol.148 (1), p.1-31
Hauptverfasser: Choi, Eun Bee, Kim, Jae-Myoung, Kim, Yun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the following nonlinear Neumann boundary-value problem with associated p(x)-Laplace-type operator where the function φ(x, v) is of type |v|p(x)−2 v with continuous function p: → (1,∞) and both f : Ω × ℝ → ℝ and g : ∂Ω × ℝ → ℝ satisfy a Carathéodory condition. We first show the existence of infinitely many weak solutions for the Neumann problems using the Fountain theorem with the Cerami condition but without the Ambrosetti and Rabinowitz condition. Next, we give a result on the existence of a sequence of weak solutions for problem (P) converging to 0 in L ∞ -norm by employing De Giorgi's iteration and the localization method under suitable conditions.
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210517000117