Controllable, observable and stable state space representations of a generalized order-up-to policy

We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production economics 2006-05, Vol.101 (1), p.172-184
Hauptverfasser: Lalwani, Chandra S., Disney, Stephen M., Towill, Denis R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 1
container_start_page 172
container_title International journal of production economics
container_volume 101
creator Lalwani, Chandra S.
Disney, Stephen M.
Towill, Denis R.
description We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.
doi_str_mv 10.1016/j.ijpe.2005.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199026034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925527305001428</els_id><sourcerecordid>954656741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vEHPAXPdk3SbdKCF1n8wgUveg75mGpKt6lJd2H99SaueBRm5g3DvDfJQ-iCkjkllF93c9eNMGeEVPMcdHGAZrQWZSEq0RyiGWlYVVRMlMfoJMaOECJoXc-QWfphCr7vle7hCnsdIWxzj9VgcZx-2gRTqqMygAOMASIMaeT8ELFvscLvMEBQvfsCi32wEIrNWEwej753ZneGjlrVRzj_xVP0dn_3unwsVi8PT8vbVWEWjE-FZlRbSkkrDFVgW6U1VK3WnFdtU9WCt5QLqIFzxipeG65KTWxTGms1JzUvT9HlXncM_nMDcZKd34QhnZS0aQjjpFykJbZfMsHHGKCVY3BrFXaSEpm9lJ3MXsrspcxBM-l5T0q_B_PHAEhmeDBebmWpEjnVXcpE5QlcHqYcMwomab2QH9M6qd3s1SCZsXUQZDQOBgPWBTCTtN7995hv5oqYaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199026034</pqid></control><display><type>article</type><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</creator><creatorcontrib>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</creatorcontrib><description>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2005.05.014</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bullwhip ; Controllability ; Inventory control ; Observability ; Order processing ; Order-up-to policy ; Production and inventory control ; Production controls ; State space models</subject><ispartof>International journal of production economics, 2006-05, Vol.101 (1), p.172-184</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</citedby><cites>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpe.2005.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a101_3ay_3a2006_3ai_3a1_3ap_3a172-184.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalwani, Chandra S.</creatorcontrib><creatorcontrib>Disney, Stephen M.</creatorcontrib><creatorcontrib>Towill, Denis R.</creatorcontrib><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><title>International journal of production economics</title><description>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</description><subject>Bullwhip</subject><subject>Controllability</subject><subject>Inventory control</subject><subject>Observability</subject><subject>Order processing</subject><subject>Order-up-to policy</subject><subject>Production and inventory control</subject><subject>Production controls</subject><subject>State space models</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LxDAQDaLg-vEHPAXPdk3SbdKCF1n8wgUveg75mGpKt6lJd2H99SaueBRm5g3DvDfJQ-iCkjkllF93c9eNMGeEVPMcdHGAZrQWZSEq0RyiGWlYVVRMlMfoJMaOECJoXc-QWfphCr7vle7hCnsdIWxzj9VgcZx-2gRTqqMygAOMASIMaeT8ELFvscLvMEBQvfsCi32wEIrNWEwej753ZneGjlrVRzj_xVP0dn_3unwsVi8PT8vbVWEWjE-FZlRbSkkrDFVgW6U1VK3WnFdtU9WCt5QLqIFzxipeG65KTWxTGms1JzUvT9HlXncM_nMDcZKd34QhnZS0aQjjpFykJbZfMsHHGKCVY3BrFXaSEpm9lJ3MXsrspcxBM-l5T0q_B_PHAEhmeDBebmWpEjnVXcpE5QlcHqYcMwomab2QH9M6qd3s1SCZsXUQZDQOBgPWBTCTtN7995hv5oqYaQ</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Lalwani, Chandra S.</creator><creator>Disney, Stephen M.</creator><creator>Towill, Denis R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20060501</creationdate><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><author>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bullwhip</topic><topic>Controllability</topic><topic>Inventory control</topic><topic>Observability</topic><topic>Order processing</topic><topic>Order-up-to policy</topic><topic>Production and inventory control</topic><topic>Production controls</topic><topic>State space models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalwani, Chandra S.</creatorcontrib><creatorcontrib>Disney, Stephen M.</creatorcontrib><creatorcontrib>Towill, Denis R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalwani, Chandra S.</au><au>Disney, Stephen M.</au><au>Towill, Denis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable, observable and stable state space representations of a generalized order-up-to policy</atitle><jtitle>International journal of production economics</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>101</volume><issue>1</issue><spage>172</spage><epage>184</epage><pages>172-184</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2005.05.014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5273
ispartof International journal of production economics, 2006-05, Vol.101 (1), p.172-184
issn 0925-5273
1873-7579
language eng
recordid cdi_proquest_journals_199026034
source RePEc; Access via ScienceDirect (Elsevier)
subjects Bullwhip
Controllability
Inventory control
Observability
Order processing
Order-up-to policy
Production and inventory control
Production controls
State space models
title Controllable, observable and stable state space representations of a generalized order-up-to policy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable,%20observable%20and%20stable%20state%20space%20representations%20of%20a%20generalized%20order-up-to%20policy&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Lalwani,%20Chandra%20S.&rft.date=2006-05-01&rft.volume=101&rft.issue=1&rft.spage=172&rft.epage=184&rft.pages=172-184&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2005.05.014&rft_dat=%3Cproquest_cross%3E954656741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199026034&rft_id=info:pmid/&rft_els_id=S0925527305001428&rfr_iscdi=true