Controllable, observable and stable state space representations of a generalized order-up-to policy
We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been sh...
Gespeichert in:
Veröffentlicht in: | International journal of production economics 2006-05, Vol.101 (1), p.172-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 1 |
container_start_page | 172 |
container_title | International journal of production economics |
container_volume | 101 |
creator | Lalwani, Chandra S. Disney, Stephen M. Towill, Denis R. |
description | We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix. |
doi_str_mv | 10.1016/j.ijpe.2005.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199026034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925527305001428</els_id><sourcerecordid>954656741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vEHPAXPdk3SbdKCF1n8wgUveg75mGpKt6lJd2H99SaueBRm5g3DvDfJQ-iCkjkllF93c9eNMGeEVPMcdHGAZrQWZSEq0RyiGWlYVVRMlMfoJMaOECJoXc-QWfphCr7vle7hCnsdIWxzj9VgcZx-2gRTqqMygAOMASIMaeT8ELFvscLvMEBQvfsCi32wEIrNWEwej753ZneGjlrVRzj_xVP0dn_3unwsVi8PT8vbVWEWjE-FZlRbSkkrDFVgW6U1VK3WnFdtU9WCt5QLqIFzxipeG65KTWxTGms1JzUvT9HlXncM_nMDcZKd34QhnZS0aQjjpFykJbZfMsHHGKCVY3BrFXaSEpm9lJ3MXsrspcxBM-l5T0q_B_PHAEhmeDBebmWpEjnVXcpE5QlcHqYcMwomab2QH9M6qd3s1SCZsXUQZDQOBgPWBTCTtN7995hv5oqYaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199026034</pqid></control><display><type>article</type><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</creator><creatorcontrib>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</creatorcontrib><description>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2005.05.014</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bullwhip ; Controllability ; Inventory control ; Observability ; Order processing ; Order-up-to policy ; Production and inventory control ; Production controls ; State space models</subject><ispartof>International journal of production economics, 2006-05, Vol.101 (1), p.172-184</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</citedby><cites>FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpe.2005.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a101_3ay_3a2006_3ai_3a1_3ap_3a172-184.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalwani, Chandra S.</creatorcontrib><creatorcontrib>Disney, Stephen M.</creatorcontrib><creatorcontrib>Towill, Denis R.</creatorcontrib><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><title>International journal of production economics</title><description>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</description><subject>Bullwhip</subject><subject>Controllability</subject><subject>Inventory control</subject><subject>Observability</subject><subject>Order processing</subject><subject>Order-up-to policy</subject><subject>Production and inventory control</subject><subject>Production controls</subject><subject>State space models</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LxDAQDaLg-vEHPAXPdk3SbdKCF1n8wgUveg75mGpKt6lJd2H99SaueBRm5g3DvDfJQ-iCkjkllF93c9eNMGeEVPMcdHGAZrQWZSEq0RyiGWlYVVRMlMfoJMaOECJoXc-QWfphCr7vle7hCnsdIWxzj9VgcZx-2gRTqqMygAOMASIMaeT8ELFvscLvMEBQvfsCi32wEIrNWEwej753ZneGjlrVRzj_xVP0dn_3unwsVi8PT8vbVWEWjE-FZlRbSkkrDFVgW6U1VK3WnFdtU9WCt5QLqIFzxipeG65KTWxTGms1JzUvT9HlXncM_nMDcZKd34QhnZS0aQjjpFykJbZfMsHHGKCVY3BrFXaSEpm9lJ3MXsrspcxBM-l5T0q_B_PHAEhmeDBebmWpEjnVXcpE5QlcHqYcMwomab2QH9M6qd3s1SCZsXUQZDQOBgPWBTCTtN7995hv5oqYaQ</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Lalwani, Chandra S.</creator><creator>Disney, Stephen M.</creator><creator>Towill, Denis R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20060501</creationdate><title>Controllable, observable and stable state space representations of a generalized order-up-to policy</title><author>Lalwani, Chandra S. ; Disney, Stephen M. ; Towill, Denis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b21bd110f7c1aedfabbe5fbb665f95876f167e8e6622568c6a3b0d93cddb60863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bullwhip</topic><topic>Controllability</topic><topic>Inventory control</topic><topic>Observability</topic><topic>Order processing</topic><topic>Order-up-to policy</topic><topic>Production and inventory control</topic><topic>Production controls</topic><topic>State space models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalwani, Chandra S.</creatorcontrib><creatorcontrib>Disney, Stephen M.</creatorcontrib><creatorcontrib>Towill, Denis R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalwani, Chandra S.</au><au>Disney, Stephen M.</au><au>Towill, Denis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable, observable and stable state space representations of a generalized order-up-to policy</atitle><jtitle>International journal of production economics</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>101</volume><issue>1</issue><spage>172</spage><epage>184</epage><pages>172-184</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>We outline a framework for developing state space representations of production and inventory control policies from their transfer functions. The particular replenishment rules that we consider are members of the inventory and order based production control system family that have previously been shown to be a generalization of the periodic review Order-Up-To policy. Traditionally, this model has been studied with transfer functions in the frequency domain. In this paper, we focus on the discrete time case and derive state space representations that are both controllable and observable. The state space approach is then used to determine the stability boundary of the production ordering system based on the eigenvalues of the state matrix.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2005.05.014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5273 |
ispartof | International journal of production economics, 2006-05, Vol.101 (1), p.172-184 |
issn | 0925-5273 1873-7579 |
language | eng |
recordid | cdi_proquest_journals_199026034 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Bullwhip Controllability Inventory control Observability Order processing Order-up-to policy Production and inventory control Production controls State space models |
title | Controllable, observable and stable state space representations of a generalized order-up-to policy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable,%20observable%20and%20stable%20state%20space%20representations%20of%20a%20generalized%20order-up-to%20policy&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Lalwani,%20Chandra%20S.&rft.date=2006-05-01&rft.volume=101&rft.issue=1&rft.spage=172&rft.epage=184&rft.pages=172-184&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2005.05.014&rft_dat=%3Cproquest_cross%3E954656741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199026034&rft_id=info:pmid/&rft_els_id=S0925527305001428&rfr_iscdi=true |