Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K
Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics 2016-04, Vol.16 (7), p.4439-4449 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4449 |
---|---|
container_issue | 7 |
container_start_page | 4439 |
container_title | Atmospheric chemistry and physics |
container_volume | 16 |
creator | Joelsson, L. M. T. Schmidt, J. A. Nilsson, E. J. K. Blunier, T. Griffith, D. W. T. Ono, S. Johnson, M. S. |
description | Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation). |
doi_str_mv | 10.5194/acp-16-4439-2016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989857053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989857053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1823-ac8ede47cc64e458ac4c045fa046d4202639236acb3e8466c581d84faa266fa13</originalsourceid><addsrcrecordid>eNptkM9KAzEQxoMoWKt3jwGPEs0kk2z2KPVPpYVe9GqI2QS22GZNtgdvvpHv5JO4Sz14EOZjhpmPb-BHyDnwKwU1XjvfMdAMUdZMcNAHZALacFZJgYd_5mNyUsqac6E44IS8LNpt6FtP25L61AUaYgy-LzRFCoLO5lTS2-_Pr6EuB63m1G0bCvK_S8xpQ0VlaJ-oBDksF6fkKLq3Es5--5Q83989zeZsuXp4nN0smQcjJHPehCZg5b3GgMo4j56jio6jblBwoWUtpHb-VQaDWntloDEYnRNaRwdySi72uV1O77tQertOu7wdXlqoTW1UxZUcXHzv8jmVkkO0XW43Ln9Y4HakaAeKFrQdKdqRovwBwI1mmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989857053</pqid></control><display><type>article</type><title>Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Joelsson, L. M. T. ; Schmidt, J. A. ; Nilsson, E. J. K. ; Blunier, T. ; Griffith, D. W. T. ; Ono, S. ; Johnson, M. S.</creator><creatorcontrib>Joelsson, L. M. T. ; Schmidt, J. A. ; Nilsson, E. J. K. ; Blunier, T. ; Griffith, D. W. T. ; Ono, S. ; Johnson, M. S.</creatorcontrib><description>Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-16-4439-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmospheric methane ; Corrections ; Earth ; Earth atmosphere ; Greenhouse effect ; Greenhouse gases ; Isotope composition ; Isotope effect ; Isotopes ; Kinetics ; Methane ; Methane budget ; Oxidation ; Quantum chemistry ; Removal ; Temperature ; Temperature dependence ; Temperature effects ; Troposphere ; Uncertainty</subject><ispartof>Atmospheric chemistry and physics, 2016-04, Vol.16 (7), p.4439-4449</ispartof><rights>Copyright Copernicus GmbH 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1823-ac8ede47cc64e458ac4c045fa046d4202639236acb3e8466c581d84faa266fa13</citedby><cites>FETCH-LOGICAL-c1823-ac8ede47cc64e458ac4c045fa046d4202639236acb3e8466c581d84faa266fa13</cites><orcidid>0000-0002-3645-3955 ; 0000-0002-6065-7747 ; 0000-0002-7297-3851 ; 0000-0002-7986-1924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Joelsson, L. M. T.</creatorcontrib><creatorcontrib>Schmidt, J. A.</creatorcontrib><creatorcontrib>Nilsson, E. J. K.</creatorcontrib><creatorcontrib>Blunier, T.</creatorcontrib><creatorcontrib>Griffith, D. W. T.</creatorcontrib><creatorcontrib>Ono, S.</creatorcontrib><creatorcontrib>Johnson, M. S.</creatorcontrib><title>Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K</title><title>Atmospheric chemistry and physics</title><description>Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).</description><subject>Atmospheric methane</subject><subject>Corrections</subject><subject>Earth</subject><subject>Earth atmosphere</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Isotope composition</subject><subject>Isotope effect</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Methane</subject><subject>Methane budget</subject><subject>Oxidation</subject><subject>Quantum chemistry</subject><subject>Removal</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Troposphere</subject><subject>Uncertainty</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkM9KAzEQxoMoWKt3jwGPEs0kk2z2KPVPpYVe9GqI2QS22GZNtgdvvpHv5JO4Sz14EOZjhpmPb-BHyDnwKwU1XjvfMdAMUdZMcNAHZALacFZJgYd_5mNyUsqac6E44IS8LNpt6FtP25L61AUaYgy-LzRFCoLO5lTS2-_Pr6EuB63m1G0bCvK_S8xpQ0VlaJ-oBDksF6fkKLq3Es5--5Q83989zeZsuXp4nN0smQcjJHPehCZg5b3GgMo4j56jio6jblBwoWUtpHb-VQaDWntloDEYnRNaRwdySi72uV1O77tQertOu7wdXlqoTW1UxZUcXHzv8jmVkkO0XW43Ln9Y4HakaAeKFrQdKdqRovwBwI1mmg</recordid><startdate>20160411</startdate><enddate>20160411</enddate><creator>Joelsson, L. M. T.</creator><creator>Schmidt, J. A.</creator><creator>Nilsson, E. J. K.</creator><creator>Blunier, T.</creator><creator>Griffith, D. W. T.</creator><creator>Ono, S.</creator><creator>Johnson, M. S.</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-3645-3955</orcidid><orcidid>https://orcid.org/0000-0002-6065-7747</orcidid><orcidid>https://orcid.org/0000-0002-7297-3851</orcidid><orcidid>https://orcid.org/0000-0002-7986-1924</orcidid></search><sort><creationdate>20160411</creationdate><title>Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K</title><author>Joelsson, L. M. T. ; Schmidt, J. A. ; Nilsson, E. J. K. ; Blunier, T. ; Griffith, D. W. T. ; Ono, S. ; Johnson, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1823-ac8ede47cc64e458ac4c045fa046d4202639236acb3e8466c581d84faa266fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric methane</topic><topic>Corrections</topic><topic>Earth</topic><topic>Earth atmosphere</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Isotope composition</topic><topic>Isotope effect</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Methane</topic><topic>Methane budget</topic><topic>Oxidation</topic><topic>Quantum chemistry</topic><topic>Removal</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Troposphere</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joelsson, L. M. T.</creatorcontrib><creatorcontrib>Schmidt, J. A.</creatorcontrib><creatorcontrib>Nilsson, E. J. K.</creatorcontrib><creatorcontrib>Blunier, T.</creatorcontrib><creatorcontrib>Griffith, D. W. T.</creatorcontrib><creatorcontrib>Ono, S.</creatorcontrib><creatorcontrib>Johnson, M. S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joelsson, L. M. T.</au><au>Schmidt, J. A.</au><au>Nilsson, E. J. K.</au><au>Blunier, T.</au><au>Griffith, D. W. T.</au><au>Ono, S.</au><au>Johnson, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2016-04-11</date><risdate>2016</risdate><volume>16</volume><issue>7</issue><spage>4439</spage><epage>4449</epage><pages>4439-4449</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-16-4439-2016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3645-3955</orcidid><orcidid>https://orcid.org/0000-0002-6065-7747</orcidid><orcidid>https://orcid.org/0000-0002-7297-3851</orcidid><orcidid>https://orcid.org/0000-0002-7986-1924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2016-04, Vol.16 (7), p.4439-4449 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_proquest_journals_1989857053 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Atmospheric methane Corrections Earth Earth atmosphere Greenhouse effect Greenhouse gases Isotope composition Isotope effect Isotopes Kinetics Methane Methane budget Oxidation Quantum chemistry Removal Temperature Temperature dependence Temperature effects Troposphere Uncertainty |
title | Kinetic isotope effects of 12 CH 3 D + OH and 13 CH 3 D + OH from 278 to 313 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20isotope%20effects%20of%2012%20CH%203%20D%E2%80%AF%E2%80%AF+%E2%80%AFOH%20and%2013%20CH%203%20D%E2%80%AF%E2%80%AF+%E2%80%AFOH%20from%20278%20to%20313%E2%80%AFK&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Joelsson,%20L.%20M.%20T.&rft.date=2016-04-11&rft.volume=16&rft.issue=7&rft.spage=4439&rft.epage=4449&rft.pages=4439-4449&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-16-4439-2016&rft_dat=%3Cproquest_cross%3E1989857053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989857053&rft_id=info:pmid/&rfr_iscdi=true |