The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes

To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development 2018-01, Vol.11 (1), p.283-304
Hauptverfasser: van der Velde, Ivar R., Miller, John B., van der Molen, Michiel K., Tans, Pieter P., Vaughn, Bruce H., White, James W. C., Schaefer, Kevin, Peters, Wouter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 1
container_start_page 283
container_title Geoscientific Model Development
container_volume 11
creator van der Velde, Ivar R.
Miller, John B.
van der Molen, Michiel K.
Tans, Pieter P.
Vaughn, Bruce H.
White, James W. C.
Schaefer, Kevin
Peters, Wouter
description To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.
doi_str_mv 10.5194/gmd-11-283-2018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989517768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989517768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhiMEEqWwZmuJDSzSeuokttlVKS-pUhcNa8tNx21KkxQ7reiOKyAuwCE4AQfgEJwEV2XBamak_6H5guAcaCcGGXVn5TQECHuChT0K4iBogZQQyoSyw3_7cXDi3ILSRPKEt4K3bI4k1XZSV5nV-RNaMtCNJn3nirJY6qaoKzLeugZLYmpL0hHpEV1NyfcnAUZScplmg_44TP2xgQ69uiYWG1vgpqhmpKi8p9yH1NXXx9I7f17fdVPWbjVHiwRf8rmuZkhWts7ROXSnwZHRS4dnf7MdPN7eZOl9OBzdPaT9YZgDRCKMxGTqn2KGsphqQc0kolyaaNrjkEeCU2NiCmxiZCw0Ist5ziVFw5iQiWTI2sHFPtc3P6_RNWpRr23lKxVIIWPgPBFe1d2rcls7Z9GolS1KbbcKqNpxV567AlCeu9pxZ79D0XcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989517768</pqid></control><display><type>article</type><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</creator><creatorcontrib>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</creatorcontrib><description>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-11-283-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmosphere ; Atmospheric models ; Atmospheric transport ; Atmospheric transport models ; Bayesian analysis ; Biological assimilation ; Biosphere ; Biosphere models ; Carbon ; Carbon 13 ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon dioxide exchange ; Carbon dioxide flux ; Carbon dioxide variations ; Carbon isotopes ; Carbon monoxide ; Climate models ; Computer simulation ; Conductance ; Data ; Data assimilation ; Data collection ; Data processing ; Diagnostic systems ; Drought ; Earth ; Earth surface ; Energy balance ; Exchanging ; Fluxes ; Gases ; Information retrieval ; Isotopes ; Mathematical models ; Modular design ; Modular systems ; Northern Hemisphere ; Ocean models ; Oceans ; Plants (botany) ; Probability theory ; Prototypes ; Ratios ; Resistance ; Stomata ; Stomatal conductance ; Terrestrial environments ; Trace gases ; Tracers</subject><ispartof>Geoscientific Model Development, 2018-01, Vol.11 (1), p.283-304</ispartof><rights>Copyright Copernicus GmbH 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</citedby><cites>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</cites><orcidid>0000-0001-8166-2070 ; 0000-0001-8630-1610 ; 0000-0001-6503-957X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>van der Velde, Ivar R.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><creatorcontrib>van der Molen, Michiel K.</creatorcontrib><creatorcontrib>Tans, Pieter P.</creatorcontrib><creatorcontrib>Vaughn, Bruce H.</creatorcontrib><creatorcontrib>White, James W. C.</creatorcontrib><creatorcontrib>Schaefer, Kevin</creatorcontrib><creatorcontrib>Peters, Wouter</creatorcontrib><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><title>Geoscientific Model Development</title><description>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric transport</subject><subject>Atmospheric transport models</subject><subject>Bayesian analysis</subject><subject>Biological assimilation</subject><subject>Biosphere</subject><subject>Biosphere models</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide exchange</subject><subject>Carbon dioxide flux</subject><subject>Carbon dioxide variations</subject><subject>Carbon isotopes</subject><subject>Carbon monoxide</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Diagnostic systems</subject><subject>Drought</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Energy balance</subject><subject>Exchanging</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Information retrieval</subject><subject>Isotopes</subject><subject>Mathematical models</subject><subject>Modular design</subject><subject>Modular systems</subject><subject>Northern Hemisphere</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Plants (botany)</subject><subject>Probability theory</subject><subject>Prototypes</subject><subject>Ratios</subject><subject>Resistance</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Terrestrial environments</subject><subject>Trace gases</subject><subject>Tracers</subject><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtOwzAQhiMEEqWwZmuJDSzSeuokttlVKS-pUhcNa8tNx21KkxQ7reiOKyAuwCE4AQfgEJwEV2XBamak_6H5guAcaCcGGXVn5TQECHuChT0K4iBogZQQyoSyw3_7cXDi3ILSRPKEt4K3bI4k1XZSV5nV-RNaMtCNJn3nirJY6qaoKzLeugZLYmpL0hHpEV1NyfcnAUZScplmg_44TP2xgQ69uiYWG1vgpqhmpKi8p9yH1NXXx9I7f17fdVPWbjVHiwRf8rmuZkhWts7ROXSnwZHRS4dnf7MdPN7eZOl9OBzdPaT9YZgDRCKMxGTqn2KGsphqQc0kolyaaNrjkEeCU2NiCmxiZCw0Ist5ziVFw5iQiWTI2sHFPtc3P6_RNWpRr23lKxVIIWPgPBFe1d2rcls7Z9GolS1KbbcKqNpxV567AlCeu9pxZ79D0XcM</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>van der Velde, Ivar R.</creator><creator>Miller, John B.</creator><creator>van der Molen, Michiel K.</creator><creator>Tans, Pieter P.</creator><creator>Vaughn, Bruce H.</creator><creator>White, James W. C.</creator><creator>Schaefer, Kevin</creator><creator>Peters, Wouter</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8166-2070</orcidid><orcidid>https://orcid.org/0000-0001-8630-1610</orcidid><orcidid>https://orcid.org/0000-0001-6503-957X</orcidid></search><sort><creationdate>20180122</creationdate><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><author>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric transport</topic><topic>Atmospheric transport models</topic><topic>Bayesian analysis</topic><topic>Biological assimilation</topic><topic>Biosphere</topic><topic>Biosphere models</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide exchange</topic><topic>Carbon dioxide flux</topic><topic>Carbon dioxide variations</topic><topic>Carbon isotopes</topic><topic>Carbon monoxide</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Diagnostic systems</topic><topic>Drought</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Energy balance</topic><topic>Exchanging</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Information retrieval</topic><topic>Isotopes</topic><topic>Mathematical models</topic><topic>Modular design</topic><topic>Modular systems</topic><topic>Northern Hemisphere</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Plants (botany)</topic><topic>Probability theory</topic><topic>Prototypes</topic><topic>Ratios</topic><topic>Resistance</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Terrestrial environments</topic><topic>Trace gases</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Velde, Ivar R.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><creatorcontrib>van der Molen, Michiel K.</creatorcontrib><creatorcontrib>Tans, Pieter P.</creatorcontrib><creatorcontrib>Vaughn, Bruce H.</creatorcontrib><creatorcontrib>White, James W. C.</creatorcontrib><creatorcontrib>Schaefer, Kevin</creatorcontrib><creatorcontrib>Peters, Wouter</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Velde, Ivar R.</au><au>Miller, John B.</au><au>van der Molen, Michiel K.</au><au>Tans, Pieter P.</au><au>Vaughn, Bruce H.</au><au>White, James W. C.</au><au>Schaefer, Kevin</au><au>Peters, Wouter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</atitle><jtitle>Geoscientific Model Development</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>283</spage><epage>304</epage><pages>283-304</pages><issn>1991-9603</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-11-283-2018</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8166-2070</orcidid><orcidid>https://orcid.org/0000-0001-8630-1610</orcidid><orcidid>https://orcid.org/0000-0001-6503-957X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2018-01, Vol.11 (1), p.283-304
issn 1991-9603
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_1989517768
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atmosphere
Atmospheric models
Atmospheric transport
Atmospheric transport models
Bayesian analysis
Biological assimilation
Biosphere
Biosphere models
Carbon
Carbon 13
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon dioxide exchange
Carbon dioxide flux
Carbon dioxide variations
Carbon isotopes
Carbon monoxide
Climate models
Computer simulation
Conductance
Data
Data assimilation
Data collection
Data processing
Diagnostic systems
Drought
Earth
Earth surface
Energy balance
Exchanging
Fluxes
Gases
Information retrieval
Isotopes
Mathematical models
Modular design
Modular systems
Northern Hemisphere
Ocean models
Oceans
Plants (botany)
Probability theory
Prototypes
Ratios
Resistance
Stomata
Stomatal conductance
Terrestrial environments
Trace gases
Tracers
title The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CarbonTracker%20Data%20Assimilation%20System%20for%20CO%202%20and%20%CE%B4%2013%20C%20(CTDAS-C13%20v1.0):%20retrieving%20information%20on%C2%A0land%E2%80%93atmosphere%20exchange%20processes&rft.jtitle=Geoscientific%20Model%20Development&rft.au=van%20der%20Velde,%20Ivar%20R.&rft.date=2018-01-22&rft.volume=11&rft.issue=1&rft.spage=283&rft.epage=304&rft.pages=283-304&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-11-283-2018&rft_dat=%3Cproquest_cross%3E1989517768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989517768&rft_id=info:pmid/&rfr_iscdi=true