The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes
To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trac...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2018-01, Vol.11 (1), p.283-304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 1 |
container_start_page | 283 |
container_title | Geoscientific Model Development |
container_volume | 11 |
creator | van der Velde, Ivar R. Miller, John B. van der Molen, Michiel K. Tans, Pieter P. Vaughn, Bruce H. White, James W. C. Schaefer, Kevin Peters, Wouter |
description | To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance. |
doi_str_mv | 10.5194/gmd-11-283-2018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989517768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989517768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</originalsourceid><addsrcrecordid>eNpNkEtOwzAQhiMEEqWwZmuJDSzSeuokttlVKS-pUhcNa8tNx21KkxQ7reiOKyAuwCE4AQfgEJwEV2XBamak_6H5guAcaCcGGXVn5TQECHuChT0K4iBogZQQyoSyw3_7cXDi3ILSRPKEt4K3bI4k1XZSV5nV-RNaMtCNJn3nirJY6qaoKzLeugZLYmpL0hHpEV1NyfcnAUZScplmg_44TP2xgQ69uiYWG1vgpqhmpKi8p9yH1NXXx9I7f17fdVPWbjVHiwRf8rmuZkhWts7ROXSnwZHRS4dnf7MdPN7eZOl9OBzdPaT9YZgDRCKMxGTqn2KGsphqQc0kolyaaNrjkEeCU2NiCmxiZCw0Ist5ziVFw5iQiWTI2sHFPtc3P6_RNWpRr23lKxVIIWPgPBFe1d2rcls7Z9GolS1KbbcKqNpxV567AlCeu9pxZ79D0XcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989517768</pqid></control><display><type>article</type><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</creator><creatorcontrib>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</creatorcontrib><description>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-11-283-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmosphere ; Atmospheric models ; Atmospheric transport ; Atmospheric transport models ; Bayesian analysis ; Biological assimilation ; Biosphere ; Biosphere models ; Carbon ; Carbon 13 ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon dioxide exchange ; Carbon dioxide flux ; Carbon dioxide variations ; Carbon isotopes ; Carbon monoxide ; Climate models ; Computer simulation ; Conductance ; Data ; Data assimilation ; Data collection ; Data processing ; Diagnostic systems ; Drought ; Earth ; Earth surface ; Energy balance ; Exchanging ; Fluxes ; Gases ; Information retrieval ; Isotopes ; Mathematical models ; Modular design ; Modular systems ; Northern Hemisphere ; Ocean models ; Oceans ; Plants (botany) ; Probability theory ; Prototypes ; Ratios ; Resistance ; Stomata ; Stomatal conductance ; Terrestrial environments ; Trace gases ; Tracers</subject><ispartof>Geoscientific Model Development, 2018-01, Vol.11 (1), p.283-304</ispartof><rights>Copyright Copernicus GmbH 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</citedby><cites>FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</cites><orcidid>0000-0001-8166-2070 ; 0000-0001-8630-1610 ; 0000-0001-6503-957X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>van der Velde, Ivar R.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><creatorcontrib>van der Molen, Michiel K.</creatorcontrib><creatorcontrib>Tans, Pieter P.</creatorcontrib><creatorcontrib>Vaughn, Bruce H.</creatorcontrib><creatorcontrib>White, James W. C.</creatorcontrib><creatorcontrib>Schaefer, Kevin</creatorcontrib><creatorcontrib>Peters, Wouter</creatorcontrib><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><title>Geoscientific Model Development</title><description>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric transport</subject><subject>Atmospheric transport models</subject><subject>Bayesian analysis</subject><subject>Biological assimilation</subject><subject>Biosphere</subject><subject>Biosphere models</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide exchange</subject><subject>Carbon dioxide flux</subject><subject>Carbon dioxide variations</subject><subject>Carbon isotopes</subject><subject>Carbon monoxide</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Diagnostic systems</subject><subject>Drought</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Energy balance</subject><subject>Exchanging</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Information retrieval</subject><subject>Isotopes</subject><subject>Mathematical models</subject><subject>Modular design</subject><subject>Modular systems</subject><subject>Northern Hemisphere</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Plants (botany)</subject><subject>Probability theory</subject><subject>Prototypes</subject><subject>Ratios</subject><subject>Resistance</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Terrestrial environments</subject><subject>Trace gases</subject><subject>Tracers</subject><issn>1991-9603</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtOwzAQhiMEEqWwZmuJDSzSeuokttlVKS-pUhcNa8tNx21KkxQ7reiOKyAuwCE4AQfgEJwEV2XBamak_6H5guAcaCcGGXVn5TQECHuChT0K4iBogZQQyoSyw3_7cXDi3ILSRPKEt4K3bI4k1XZSV5nV-RNaMtCNJn3nirJY6qaoKzLeugZLYmpL0hHpEV1NyfcnAUZScplmg_44TP2xgQ69uiYWG1vgpqhmpKi8p9yH1NXXx9I7f17fdVPWbjVHiwRf8rmuZkhWts7ROXSnwZHRS4dnf7MdPN7eZOl9OBzdPaT9YZgDRCKMxGTqn2KGsphqQc0kolyaaNrjkEeCU2NiCmxiZCw0Ist5ziVFw5iQiWTI2sHFPtc3P6_RNWpRr23lKxVIIWPgPBFe1d2rcls7Z9GolS1KbbcKqNpxV567AlCeu9pxZ79D0XcM</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>van der Velde, Ivar R.</creator><creator>Miller, John B.</creator><creator>van der Molen, Michiel K.</creator><creator>Tans, Pieter P.</creator><creator>Vaughn, Bruce H.</creator><creator>White, James W. C.</creator><creator>Schaefer, Kevin</creator><creator>Peters, Wouter</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8166-2070</orcidid><orcidid>https://orcid.org/0000-0001-8630-1610</orcidid><orcidid>https://orcid.org/0000-0001-6503-957X</orcidid></search><sort><creationdate>20180122</creationdate><title>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</title><author>van der Velde, Ivar R. ; Miller, John B. ; van der Molen, Michiel K. ; Tans, Pieter P. ; Vaughn, Bruce H. ; White, James W. C. ; Schaefer, Kevin ; Peters, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1148-48bd1993f0350a80fb4079f4d271c4870ff5013bf958aee3c7c790ef3389693e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric transport</topic><topic>Atmospheric transport models</topic><topic>Bayesian analysis</topic><topic>Biological assimilation</topic><topic>Biosphere</topic><topic>Biosphere models</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide exchange</topic><topic>Carbon dioxide flux</topic><topic>Carbon dioxide variations</topic><topic>Carbon isotopes</topic><topic>Carbon monoxide</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Diagnostic systems</topic><topic>Drought</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Energy balance</topic><topic>Exchanging</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Information retrieval</topic><topic>Isotopes</topic><topic>Mathematical models</topic><topic>Modular design</topic><topic>Modular systems</topic><topic>Northern Hemisphere</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Plants (botany)</topic><topic>Probability theory</topic><topic>Prototypes</topic><topic>Ratios</topic><topic>Resistance</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Terrestrial environments</topic><topic>Trace gases</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Velde, Ivar R.</creatorcontrib><creatorcontrib>Miller, John B.</creatorcontrib><creatorcontrib>van der Molen, Michiel K.</creatorcontrib><creatorcontrib>Tans, Pieter P.</creatorcontrib><creatorcontrib>Vaughn, Bruce H.</creatorcontrib><creatorcontrib>White, James W. C.</creatorcontrib><creatorcontrib>Schaefer, Kevin</creatorcontrib><creatorcontrib>Peters, Wouter</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Velde, Ivar R.</au><au>Miller, John B.</au><au>van der Molen, Michiel K.</au><au>Tans, Pieter P.</au><au>Vaughn, Bruce H.</au><au>White, James W. C.</au><au>Schaefer, Kevin</au><au>Peters, Wouter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes</atitle><jtitle>Geoscientific Model Development</jtitle><date>2018-01-22</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>283</spage><epage>304</epage><pages>283-304</pages><issn>1991-9603</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented here can be of great benefit not only to study the global carbon balance but also to potentially function as a data-driven diagnostic to assess multiple leaf-level exchange parameterizations in carbon-climate models that influence the CO2, water, isotope, and energy balance.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-11-283-2018</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8166-2070</orcidid><orcidid>https://orcid.org/0000-0001-8630-1610</orcidid><orcidid>https://orcid.org/0000-0001-6503-957X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2018-01, Vol.11 (1), p.283-304 |
issn | 1991-9603 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_1989517768 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atmosphere Atmospheric models Atmospheric transport Atmospheric transport models Bayesian analysis Biological assimilation Biosphere Biosphere models Carbon Carbon 13 Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide exchange Carbon dioxide flux Carbon dioxide variations Carbon isotopes Carbon monoxide Climate models Computer simulation Conductance Data Data assimilation Data collection Data processing Diagnostic systems Drought Earth Earth surface Energy balance Exchanging Fluxes Gases Information retrieval Isotopes Mathematical models Modular design Modular systems Northern Hemisphere Ocean models Oceans Plants (botany) Probability theory Prototypes Ratios Resistance Stomata Stomatal conductance Terrestrial environments Trace gases Tracers |
title | The CarbonTracker Data Assimilation System for CO 2 and δ 13 C (CTDAS-C13 v1.0): retrieving information on land–atmosphere exchange processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CarbonTracker%20Data%20Assimilation%20System%20for%20CO%202%20and%20%CE%B4%2013%20C%20(CTDAS-C13%20v1.0):%20retrieving%20information%20on%C2%A0land%E2%80%93atmosphere%20exchange%20processes&rft.jtitle=Geoscientific%20Model%20Development&rft.au=van%20der%20Velde,%20Ivar%20R.&rft.date=2018-01-22&rft.volume=11&rft.issue=1&rft.spage=283&rft.epage=304&rft.pages=283-304&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-11-283-2018&rft_dat=%3Cproquest_cross%3E1989517768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989517768&rft_id=info:pmid/&rfr_iscdi=true |