A hybrid simulation optimization method for production planning of dedicated remanufacturing

This paper presents a hybrid cell evaluated genetic algorithm (CEGA) for optimization of the dedicated remanufacturing system with simulation. The paper first summarizes the special characteristics and problems of the dedicated remanufacturing. The paper then proposes a simulation model with a prior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production economics 2009-02, Vol.117 (2), p.286-301
Hauptverfasser: Li, Jianzhi, González, Miguel, Zhu, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 286
container_title International journal of production economics
container_volume 117
creator Li, Jianzhi
González, Miguel
Zhu, Yun
description This paper presents a hybrid cell evaluated genetic algorithm (CEGA) for optimization of the dedicated remanufacturing system with simulation. The paper first summarizes the special characteristics and problems of the dedicated remanufacturing. The paper then proposes a simulation model with a prioritized stochastic batch arrival mechanism, considering factors that affect the total profit. Based on the simulation model, the CEGA algorithm is developed to optimize the production planning and control policies for dedicated remanufacturing. A case study is provided based on the remanufacturing facility located at Austin, USA
doi_str_mv 10.1016/j.ijpe.2008.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198949308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925527308003642</els_id><sourcerecordid>1641339481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-7b8e8a9ecac6261c81941a959fb1b2ab03d3f70d35188ac66a8f785b6ff8a8a93</originalsourceid><addsrcrecordid>eNp9UMFu1TAQtBBIPNr-AKeIe4I3bhJb4lJVUFArcYFbJcux1zxHL3FwnEqvX8-GoB45rHdtz8yOhrH3wCvg0H4cqjDMWNWcywqg4rx5xQ4gO1F2TadeswNXdVM2dSfesnfLMnDOO5DywB5viuO5T8EVSxjXk8khTkWccxjD834ZMR-jK3xMxZyiW-3f1_lkpilMv4roC4cuWJPRFQlHM63e2Lwm-rxkb7w5LXj1r1-wn18-_7j9Wj58v_t2e_NQ2qYWuex6idIotMa2dQtWgroGoxrle-hr03PhhO-4Ew1ZJkxrpO9k07feS0NEccE-7Lpk8PeKS9ZDXNNEKzUoqa6V4JJA9Q6yKS5LQq_nFEaTzhq43kLUg95C1FuIGkBTiES630kJZ7QvDESkVWijftLCAHR0nqmIqqiFbaSaty5bLTjoYx5J7dOuhhTGU8CkFxtwspRfQpu1i-F_Zv4A3x-WVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198949308</pqid></control><display><type>article</type><title>A hybrid simulation optimization method for production planning of dedicated remanufacturing</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Jianzhi ; González, Miguel ; Zhu, Yun</creator><creatorcontrib>Li, Jianzhi ; González, Miguel ; Zhu, Yun</creatorcontrib><description>This paper presents a hybrid cell evaluated genetic algorithm (CEGA) for optimization of the dedicated remanufacturing system with simulation. The paper first summarizes the special characteristics and problems of the dedicated remanufacturing. The paper then proposes a simulation model with a prioritized stochastic batch arrival mechanism, considering factors that affect the total profit. Based on the simulation model, the CEGA algorithm is developed to optimize the production planning and control policies for dedicated remanufacturing. A case study is provided based on the remanufacturing facility located at Austin, USA</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2008.11.005</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Fractional factorial design ; Genetic algorithm ; Genetic algorithms ; Optimization techniques ; Optimization with simulation ; Production planning ; Remanufacturing ; Remanufacturing Optimization with simulation Genetic algorithm Fractional factorial design ; Simulation ; Stochastic models ; Studies</subject><ispartof>International journal of production economics, 2009-02, Vol.117 (2), p.286-301</ispartof><rights>2008</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-7b8e8a9ecac6261c81941a959fb1b2ab03d3f70d35188ac66a8f785b6ff8a8a93</citedby><cites>FETCH-LOGICAL-c523t-7b8e8a9ecac6261c81941a959fb1b2ab03d3f70d35188ac66a8f785b6ff8a8a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925527308003642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a117_3ay_3a2009_3ai_3a2_3ap_3a286-301.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jianzhi</creatorcontrib><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><title>A hybrid simulation optimization method for production planning of dedicated remanufacturing</title><title>International journal of production economics</title><description>This paper presents a hybrid cell evaluated genetic algorithm (CEGA) for optimization of the dedicated remanufacturing system with simulation. The paper first summarizes the special characteristics and problems of the dedicated remanufacturing. The paper then proposes a simulation model with a prioritized stochastic batch arrival mechanism, considering factors that affect the total profit. Based on the simulation model, the CEGA algorithm is developed to optimize the production planning and control policies for dedicated remanufacturing. A case study is provided based on the remanufacturing facility located at Austin, USA</description><subject>Fractional factorial design</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Optimization techniques</subject><subject>Optimization with simulation</subject><subject>Production planning</subject><subject>Remanufacturing</subject><subject>Remanufacturing Optimization with simulation Genetic algorithm Fractional factorial design</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UMFu1TAQtBBIPNr-AKeIe4I3bhJb4lJVUFArcYFbJcux1zxHL3FwnEqvX8-GoB45rHdtz8yOhrH3wCvg0H4cqjDMWNWcywqg4rx5xQ4gO1F2TadeswNXdVM2dSfesnfLMnDOO5DywB5viuO5T8EVSxjXk8khTkWccxjD834ZMR-jK3xMxZyiW-3f1_lkpilMv4roC4cuWJPRFQlHM63e2Lwm-rxkb7w5LXj1r1-wn18-_7j9Wj58v_t2e_NQ2qYWuex6idIotMa2dQtWgroGoxrle-hr03PhhO-4Ew1ZJkxrpO9k07feS0NEccE-7Lpk8PeKS9ZDXNNEKzUoqa6V4JJA9Q6yKS5LQq_nFEaTzhq43kLUg95C1FuIGkBTiES630kJZ7QvDESkVWijftLCAHR0nqmIqqiFbaSaty5bLTjoYx5J7dOuhhTGU8CkFxtwspRfQpu1i-F_Zv4A3x-WVQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Li, Jianzhi</creator><creator>González, Miguel</creator><creator>Zhu, Yun</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090201</creationdate><title>A hybrid simulation optimization method for production planning of dedicated remanufacturing</title><author>Li, Jianzhi ; González, Miguel ; Zhu, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-7b8e8a9ecac6261c81941a959fb1b2ab03d3f70d35188ac66a8f785b6ff8a8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Fractional factorial design</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Optimization techniques</topic><topic>Optimization with simulation</topic><topic>Production planning</topic><topic>Remanufacturing</topic><topic>Remanufacturing Optimization with simulation Genetic algorithm Fractional factorial design</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianzhi</creatorcontrib><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianzhi</au><au>González, Miguel</au><au>Zhu, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid simulation optimization method for production planning of dedicated remanufacturing</atitle><jtitle>International journal of production economics</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>117</volume><issue>2</issue><spage>286</spage><epage>301</epage><pages>286-301</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>This paper presents a hybrid cell evaluated genetic algorithm (CEGA) for optimization of the dedicated remanufacturing system with simulation. The paper first summarizes the special characteristics and problems of the dedicated remanufacturing. The paper then proposes a simulation model with a prioritized stochastic batch arrival mechanism, considering factors that affect the total profit. Based on the simulation model, the CEGA algorithm is developed to optimize the production planning and control policies for dedicated remanufacturing. A case study is provided based on the remanufacturing facility located at Austin, USA</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2008.11.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5273
ispartof International journal of production economics, 2009-02, Vol.117 (2), p.286-301
issn 0925-5273
1873-7579
language eng
recordid cdi_proquest_journals_198949308
source RePEc; Elsevier ScienceDirect Journals
subjects Fractional factorial design
Genetic algorithm
Genetic algorithms
Optimization techniques
Optimization with simulation
Production planning
Remanufacturing
Remanufacturing Optimization with simulation Genetic algorithm Fractional factorial design
Simulation
Stochastic models
Studies
title A hybrid simulation optimization method for production planning of dedicated remanufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20simulation%20optimization%20method%20for%20production%20planning%20of%20dedicated%20remanufacturing&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Li,%20Jianzhi&rft.date=2009-02-01&rft.volume=117&rft.issue=2&rft.spage=286&rft.epage=301&rft.pages=286-301&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2008.11.005&rft_dat=%3Cproquest_cross%3E1641339481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198949308&rft_id=info:pmid/&rft_els_id=S0925527308003642&rfr_iscdi=true