Improving the detection of unusual observations in high‐dimensional settings

Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach become...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2017-12, Vol.59 (4), p.449-462
Hauptverfasser: Ullah, Insha, Pawley, Matthew D.M., Smith, Adam N.H., Jones, Beatrix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 4
container_start_page 449
container_title Australian & New Zealand journal of statistics
container_volume 59
creator Ullah, Insha
Pawley, Matthew D.M.
Smith, Adam N.H.
Jones, Beatrix
description Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days. Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.
doi_str_mv 10.1111/anzs.12210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989068741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989068741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1bjKdSZZF_CmUulBB3AzT5E47pU1qblKpKx_BZ_RJnBrX3s394buHw2HsHMQAQl3Z8oMGEMcgDlgPpNJRKuOXwzAnKotA6uSYnRAthQApEtVj0_F6U1dbX855s0BeYIN546uSV463ZUutXfFqRlhv7f5M3Jd84eeL78-vwq-xpHAMCGHTBA06ZUfOrgjP_nqfPd_ePF3fR5OHu_H1aBLlidIiitE5q4RyNkcxU9pqKCCRmRM4TFUR24AVqZMOgk8LqRBoh7M40zYsyomkzy463WD-rUVqzLJq6-CEDGRpJlSqJQTqsqPyuiKq0ZlN7de23hkQZp-X2edlfvMKMHTwu1_h7h_SjKavj93PD64ab5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989068741</pqid></control><display><type>article</type><title>Improving the detection of unusual observations in high‐dimensional settings</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</creator><creatorcontrib>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</creatorcontrib><description>Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days. Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12210</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Control limits ; Covariance matrix ; Gas chromatography ; high‐dimensional data ; Mass spectrometry ; outlier detection ; Parameter estimation ; Quality control ; shrinkage estimator ; Statistical analysis ; Statistical methods ; Stochastic processes</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2017-12, Vol.59 (4), p.449-462</ispartof><rights>2017 Australian Statistical Publishing Association Inc. Published by John Wiley &amp; Sons Australia Pty Ltd.</rights><rights>Copyright © 2017 Australian Statistical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</citedby><cites>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanzs.12210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanzs.12210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ullah, Insha</creatorcontrib><creatorcontrib>Pawley, Matthew D.M.</creatorcontrib><creatorcontrib>Smith, Adam N.H.</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><title>Improving the detection of unusual observations in high‐dimensional settings</title><title>Australian &amp; New Zealand journal of statistics</title><description>Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days. Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</description><subject>Control charts</subject><subject>Control limits</subject><subject>Covariance matrix</subject><subject>Gas chromatography</subject><subject>high‐dimensional data</subject><subject>Mass spectrometry</subject><subject>outlier detection</subject><subject>Parameter estimation</subject><subject>Quality control</subject><subject>shrinkage estimator</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochastic processes</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1bjKdSZZF_CmUulBB3AzT5E47pU1qblKpKx_BZ_RJnBrX3s394buHw2HsHMQAQl3Z8oMGEMcgDlgPpNJRKuOXwzAnKotA6uSYnRAthQApEtVj0_F6U1dbX855s0BeYIN546uSV463ZUutXfFqRlhv7f5M3Jd84eeL78-vwq-xpHAMCGHTBA06ZUfOrgjP_nqfPd_ePF3fR5OHu_H1aBLlidIiitE5q4RyNkcxU9pqKCCRmRM4TFUR24AVqZMOgk8LqRBoh7M40zYsyomkzy463WD-rUVqzLJq6-CEDGRpJlSqJQTqsqPyuiKq0ZlN7de23hkQZp-X2edlfvMKMHTwu1_h7h_SjKavj93PD64ab5o</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Ullah, Insha</creator><creator>Pawley, Matthew D.M.</creator><creator>Smith, Adam N.H.</creator><creator>Jones, Beatrix</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201712</creationdate><title>Improving the detection of unusual observations in high‐dimensional settings</title><author>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control charts</topic><topic>Control limits</topic><topic>Covariance matrix</topic><topic>Gas chromatography</topic><topic>high‐dimensional data</topic><topic>Mass spectrometry</topic><topic>outlier detection</topic><topic>Parameter estimation</topic><topic>Quality control</topic><topic>shrinkage estimator</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Insha</creatorcontrib><creatorcontrib>Pawley, Matthew D.M.</creatorcontrib><creatorcontrib>Smith, Adam N.H.</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Insha</au><au>Pawley, Matthew D.M.</au><au>Smith, Adam N.H.</au><au>Jones, Beatrix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the detection of unusual observations in high‐dimensional settings</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>59</volume><issue>4</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days. Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/anzs.12210</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2017-12, Vol.59 (4), p.449-462
issn 1369-1473
1467-842X
language eng
recordid cdi_proquest_journals_1989068741
source Wiley Online Library Journals Frontfile Complete
subjects Control charts
Control limits
Covariance matrix
Gas chromatography
high‐dimensional data
Mass spectrometry
outlier detection
Parameter estimation
Quality control
shrinkage estimator
Statistical analysis
Statistical methods
Stochastic processes
title Improving the detection of unusual observations in high‐dimensional settings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20detection%20of%20unusual%20observations%20in%20high%E2%80%90dimensional%20settings&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Ullah,%20Insha&rft.date=2017-12&rft.volume=59&rft.issue=4&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12210&rft_dat=%3Cproquest_cross%3E1989068741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989068741&rft_id=info:pmid/&rfr_iscdi=true