Improving the detection of unusual observations in high‐dimensional settings
Summary Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach become...
Gespeichert in:
Veröffentlicht in: | Australian & New Zealand journal of statistics 2017-12, Vol.59 (4), p.449-462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 4 |
container_start_page | 449 |
container_title | Australian & New Zealand journal of statistics |
container_volume | 59 |
creator | Ullah, Insha Pawley, Matthew D.M. Smith, Adam N.H. Jones, Beatrix |
description | Summary
Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days.
Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size. |
doi_str_mv | 10.1111/anzs.12210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1989068741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989068741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1bjKdSZZF_CmUulBB3AzT5E47pU1qblKpKx_BZ_RJnBrX3s394buHw2HsHMQAQl3Z8oMGEMcgDlgPpNJRKuOXwzAnKotA6uSYnRAthQApEtVj0_F6U1dbX855s0BeYIN546uSV463ZUutXfFqRlhv7f5M3Jd84eeL78-vwq-xpHAMCGHTBA06ZUfOrgjP_nqfPd_ePF3fR5OHu_H1aBLlidIiitE5q4RyNkcxU9pqKCCRmRM4TFUR24AVqZMOgk8LqRBoh7M40zYsyomkzy463WD-rUVqzLJq6-CEDGRpJlSqJQTqsqPyuiKq0ZlN7de23hkQZp-X2edlfvMKMHTwu1_h7h_SjKavj93PD64ab5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989068741</pqid></control><display><type>article</type><title>Improving the detection of unusual observations in high‐dimensional settings</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</creator><creatorcontrib>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</creatorcontrib><description>Summary
Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days.
Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12210</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Control charts ; Control limits ; Covariance matrix ; Gas chromatography ; high‐dimensional data ; Mass spectrometry ; outlier detection ; Parameter estimation ; Quality control ; shrinkage estimator ; Statistical analysis ; Statistical methods ; Stochastic processes</subject><ispartof>Australian & New Zealand journal of statistics, 2017-12, Vol.59 (4), p.449-462</ispartof><rights>2017 Australian Statistical Publishing Association Inc. Published by John Wiley & Sons Australia Pty Ltd.</rights><rights>Copyright © 2017 Australian Statistical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</citedby><cites>FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanzs.12210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanzs.12210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ullah, Insha</creatorcontrib><creatorcontrib>Pawley, Matthew D.M.</creatorcontrib><creatorcontrib>Smith, Adam N.H.</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><title>Improving the detection of unusual observations in high‐dimensional settings</title><title>Australian & New Zealand journal of statistics</title><description>Summary
Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days.
Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</description><subject>Control charts</subject><subject>Control limits</subject><subject>Covariance matrix</subject><subject>Gas chromatography</subject><subject>high‐dimensional data</subject><subject>Mass spectrometry</subject><subject>outlier detection</subject><subject>Parameter estimation</subject><subject>Quality control</subject><subject>shrinkage estimator</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochastic processes</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyF1bjKdSZZF_CmUulBB3AzT5E47pU1qblKpKx_BZ_RJnBrX3s394buHw2HsHMQAQl3Z8oMGEMcgDlgPpNJRKuOXwzAnKotA6uSYnRAthQApEtVj0_F6U1dbX855s0BeYIN546uSV463ZUutXfFqRlhv7f5M3Jd84eeL78-vwq-xpHAMCGHTBA06ZUfOrgjP_nqfPd_ePF3fR5OHu_H1aBLlidIiitE5q4RyNkcxU9pqKCCRmRM4TFUR24AVqZMOgk8LqRBoh7M40zYsyomkzy463WD-rUVqzLJq6-CEDGRpJlSqJQTqsqPyuiKq0ZlN7de23hkQZp-X2edlfvMKMHTwu1_h7h_SjKavj93PD64ab5o</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Ullah, Insha</creator><creator>Pawley, Matthew D.M.</creator><creator>Smith, Adam N.H.</creator><creator>Jones, Beatrix</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201712</creationdate><title>Improving the detection of unusual observations in high‐dimensional settings</title><author>Ullah, Insha ; Pawley, Matthew D.M. ; Smith, Adam N.H. ; Jones, Beatrix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-2effa606face0b67a71d1349f0e586d2ac36d8f4f1014a1800ea5b297aa186f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control charts</topic><topic>Control limits</topic><topic>Covariance matrix</topic><topic>Gas chromatography</topic><topic>high‐dimensional data</topic><topic>Mass spectrometry</topic><topic>outlier detection</topic><topic>Parameter estimation</topic><topic>Quality control</topic><topic>shrinkage estimator</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Insha</creatorcontrib><creatorcontrib>Pawley, Matthew D.M.</creatorcontrib><creatorcontrib>Smith, Adam N.H.</creatorcontrib><creatorcontrib>Jones, Beatrix</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Australian & New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Insha</au><au>Pawley, Matthew D.M.</au><au>Smith, Adam N.H.</au><au>Jones, Beatrix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the detection of unusual observations in high‐dimensional settings</atitle><jtitle>Australian & New Zealand journal of statistics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>59</volume><issue>4</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary
Multivariate control charts are used to monitor stochastic processes for changes and unusual observations. Hotelling's T2 statistic is calculated for each new observation and an out‐of‐control signal is issued if it goes beyond the control limits. However, this classical approach becomes unreliable as the number of variables p approaches the number of observations n, and impossible when p exceeds n. In this paper, we devise an improvement to the monitoring procedure in high‐dimensional settings. We regularise the covariance matrix to estimate the baseline parameter and incorporate a leave‐one‐out re‐sampling approach to estimate the empirical distribution of future observations. An extensive simulation study demonstrates that the new method outperforms the classical Hotelling T2 approach in power, and maintains appropriate false positive rates. We demonstrate the utility of the method using a set of quality control samples collected to monitor a gas chromatography–mass spectrometry apparatus over a period of 67 days.
Using a James‐Stein shrinkage estimator for the covariance extends the Hotelling procedure to the case where dimension exceeds sample size.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/anzs.12210</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-1473 |
ispartof | Australian & New Zealand journal of statistics, 2017-12, Vol.59 (4), p.449-462 |
issn | 1369-1473 1467-842X |
language | eng |
recordid | cdi_proquest_journals_1989068741 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control charts Control limits Covariance matrix Gas chromatography high‐dimensional data Mass spectrometry outlier detection Parameter estimation Quality control shrinkage estimator Statistical analysis Statistical methods Stochastic processes |
title | Improving the detection of unusual observations in high‐dimensional settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20detection%20of%20unusual%20observations%20in%20high%E2%80%90dimensional%20settings&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Ullah,%20Insha&rft.date=2017-12&rft.volume=59&rft.issue=4&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12210&rft_dat=%3Cproquest_cross%3E1989068741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989068741&rft_id=info:pmid/&rfr_iscdi=true |