Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials
Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is de...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-02, Vol.41 (3), p.952-958 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 3 |
container_start_page | 952 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Tsitsas, Nikolaos L. Porfyrakis, Polykarpos Frantzeskakis, Dimitri J. |
description | Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988845866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988845866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXESP5ZVxaNSKzawtkzslFRJHOxEqH-PS9myupszM3cOIbcICwRgD11nFrmS4ozMEJTKsBD8nMwABWQFw-KSXMW4BwCJyGZkvfXWtU2_o76mUzsGEz99GOkwtdHRIfjB7MzY-J42PW19jAfa-z4NOBNo50bTmdGFxrTxmlzUKdzNX87J-9Pj2-ol27w-r1fLTVYxlYtM5YwhMM7RyrI2ueVOKKPQ5kJYWXPBJAiG9sOZ0pbArBUsr0xVuwLSEyafk7vT3lTua3Jx1Hs_hT6d1KiklEUpOU_U_YmqQiodXK2H0HQmHDSCPorSSZQ-ikpodkK_m9Yd_uX0drv85X8A9OVpog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988845866</pqid></control><display><type>article</type><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</creator><creatorcontrib>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</creatorcontrib><description>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3987</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>35C08 ; 35Q55 ; Decay rate ; Dielectric properties ; Dissipation ; electromagnetic waves ; losses ; Magnetic properties ; Metamaterials ; Nonlinear analysis ; nonlinear Schrödinger equation ; Perturbation methods ; Pulse propagation ; Schrodinger equation ; short pulse equation ; subclass 78A60 ; Wave propagation</subject><ispartof>Mathematical methods in the applied sciences, 2018-02, Vol.41 (3), p.952-958</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</citedby><cites>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Tsitsas, Nikolaos L.</creatorcontrib><creatorcontrib>Porfyrakis, Polykarpos</creatorcontrib><creatorcontrib>Frantzeskakis, Dimitri J.</creatorcontrib><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><title>Mathematical methods in the applied sciences</title><description>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>35C08</subject><subject>35Q55</subject><subject>Decay rate</subject><subject>Dielectric properties</subject><subject>Dissipation</subject><subject>electromagnetic waves</subject><subject>losses</subject><subject>Magnetic properties</subject><subject>Metamaterials</subject><subject>Nonlinear analysis</subject><subject>nonlinear Schrödinger equation</subject><subject>Perturbation methods</subject><subject>Pulse propagation</subject><subject>Schrodinger equation</subject><subject>short pulse equation</subject><subject>subclass 78A60</subject><subject>Wave propagation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXESP5ZVxaNSKzawtkzslFRJHOxEqH-PS9myupszM3cOIbcICwRgD11nFrmS4ozMEJTKsBD8nMwABWQFw-KSXMW4BwCJyGZkvfXWtU2_o76mUzsGEz99GOkwtdHRIfjB7MzY-J42PW19jAfa-z4NOBNo50bTmdGFxrTxmlzUKdzNX87J-9Pj2-ol27w-r1fLTVYxlYtM5YwhMM7RyrI2ueVOKKPQ5kJYWXPBJAiG9sOZ0pbArBUsr0xVuwLSEyafk7vT3lTua3Jx1Hs_hT6d1KiklEUpOU_U_YmqQiodXK2H0HQmHDSCPorSSZQ-ikpodkK_m9Yd_uX0drv85X8A9OVpog</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Tsitsas, Nikolaos L.</creator><creator>Porfyrakis, Polykarpos</creator><creator>Frantzeskakis, Dimitri J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201802</creationdate><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><author>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35C08</topic><topic>35Q55</topic><topic>Decay rate</topic><topic>Dielectric properties</topic><topic>Dissipation</topic><topic>electromagnetic waves</topic><topic>losses</topic><topic>Magnetic properties</topic><topic>Metamaterials</topic><topic>Nonlinear analysis</topic><topic>nonlinear Schrödinger equation</topic><topic>Perturbation methods</topic><topic>Pulse propagation</topic><topic>Schrodinger equation</topic><topic>short pulse equation</topic><topic>subclass 78A60</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsitsas, Nikolaos L.</creatorcontrib><creatorcontrib>Porfyrakis, Polykarpos</creatorcontrib><creatorcontrib>Frantzeskakis, Dimitri J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsitsas, Nikolaos L.</au><au>Porfyrakis, Polykarpos</au><au>Frantzeskakis, Dimitri J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-02</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>952</spage><epage>958</epage><pages>952-958</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.3987</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-02, Vol.41 (3), p.952-958 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_1988845866 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 35C08 35Q55 Decay rate Dielectric properties Dissipation electromagnetic waves losses Magnetic properties Metamaterials Nonlinear analysis nonlinear Schrödinger equation Perturbation methods Pulse propagation Schrodinger equation short pulse equation subclass 78A60 Wave propagation |
title | Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20ultrashort%20pulse%20propagation%20in%20lossy%20nonlinear%20metamaterials&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Tsitsas,%20Nikolaos%20L.&rft.date=2018-02&rft.volume=41&rft.issue=3&rft.spage=952&rft.epage=958&rft.pages=952-958&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.3987&rft_dat=%3Cproquest_cross%3E1988845866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988845866&rft_id=info:pmid/&rfr_iscdi=true |