Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials

Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-02, Vol.41 (3), p.952-958
Hauptverfasser: Tsitsas, Nikolaos L., Porfyrakis, Polykarpos, Frantzeskakis, Dimitri J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 3
container_start_page 952
container_title Mathematical methods in the applied sciences
container_volume 41
creator Tsitsas, Nikolaos L.
Porfyrakis, Polykarpos
Frantzeskakis, Dimitri J.
description Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988845866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988845866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXESP5ZVxaNSKzawtkzslFRJHOxEqH-PS9myupszM3cOIbcICwRgD11nFrmS4ozMEJTKsBD8nMwABWQFw-KSXMW4BwCJyGZkvfXWtU2_o76mUzsGEz99GOkwtdHRIfjB7MzY-J42PW19jAfa-z4NOBNo50bTmdGFxrTxmlzUKdzNX87J-9Pj2-ol27w-r1fLTVYxlYtM5YwhMM7RyrI2ueVOKKPQ5kJYWXPBJAiG9sOZ0pbArBUsr0xVuwLSEyafk7vT3lTua3Jx1Hs_hT6d1KiklEUpOU_U_YmqQiodXK2H0HQmHDSCPorSSZQ-ikpodkK_m9Yd_uX0drv85X8A9OVpog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988845866</pqid></control><display><type>article</type><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</creator><creatorcontrib>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</creatorcontrib><description>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3987</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>35C08 ; 35Q55 ; Decay rate ; Dielectric properties ; Dissipation ; electromagnetic waves ; losses ; Magnetic properties ; Metamaterials ; Nonlinear analysis ; nonlinear Schrödinger equation ; Perturbation methods ; Pulse propagation ; Schrodinger equation ; short pulse equation ; subclass 78A60 ; Wave propagation</subject><ispartof>Mathematical methods in the applied sciences, 2018-02, Vol.41 (3), p.952-958</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</citedby><cites>FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3987$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3987$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Tsitsas, Nikolaos L.</creatorcontrib><creatorcontrib>Porfyrakis, Polykarpos</creatorcontrib><creatorcontrib>Frantzeskakis, Dimitri J.</creatorcontrib><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><title>Mathematical methods in the applied sciences</title><description>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>35C08</subject><subject>35Q55</subject><subject>Decay rate</subject><subject>Dielectric properties</subject><subject>Dissipation</subject><subject>electromagnetic waves</subject><subject>losses</subject><subject>Magnetic properties</subject><subject>Metamaterials</subject><subject>Nonlinear analysis</subject><subject>nonlinear Schrödinger equation</subject><subject>Perturbation methods</subject><subject>Pulse propagation</subject><subject>Schrodinger equation</subject><subject>short pulse equation</subject><subject>subclass 78A60</subject><subject>Wave propagation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJmXESP5ZVxaNSKzawtkzslFRJHOxEqH-PS9myupszM3cOIbcICwRgD11nFrmS4ozMEJTKsBD8nMwABWQFw-KSXMW4BwCJyGZkvfXWtU2_o76mUzsGEz99GOkwtdHRIfjB7MzY-J42PW19jAfa-z4NOBNo50bTmdGFxrTxmlzUKdzNX87J-9Pj2-ol27w-r1fLTVYxlYtM5YwhMM7RyrI2ueVOKKPQ5kJYWXPBJAiG9sOZ0pbArBUsr0xVuwLSEyafk7vT3lTua3Jx1Hs_hT6d1KiklEUpOU_U_YmqQiodXK2H0HQmHDSCPorSSZQ-ikpodkK_m9Yd_uX0drv85X8A9OVpog</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Tsitsas, Nikolaos L.</creator><creator>Porfyrakis, Polykarpos</creator><creator>Frantzeskakis, Dimitri J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201802</creationdate><title>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</title><author>Tsitsas, Nikolaos L. ; Porfyrakis, Polykarpos ; Frantzeskakis, Dimitri J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-9322102661d85fa3d6e79a91d377d8f67280721dbea5d502dd723cacfe40017a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35C08</topic><topic>35Q55</topic><topic>Decay rate</topic><topic>Dielectric properties</topic><topic>Dissipation</topic><topic>electromagnetic waves</topic><topic>losses</topic><topic>Magnetic properties</topic><topic>Metamaterials</topic><topic>Nonlinear analysis</topic><topic>nonlinear Schrödinger equation</topic><topic>Perturbation methods</topic><topic>Pulse propagation</topic><topic>Schrodinger equation</topic><topic>short pulse equation</topic><topic>subclass 78A60</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsitsas, Nikolaos L.</creatorcontrib><creatorcontrib>Porfyrakis, Polykarpos</creatorcontrib><creatorcontrib>Frantzeskakis, Dimitri J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsitsas, Nikolaos L.</au><au>Porfyrakis, Polykarpos</au><au>Frantzeskakis, Dimitri J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-02</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>952</spage><epage>958</epage><pages>952-958</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Wave propagation in lossy nonlinear metamaterials is analytically investigated by means of perturbation methods. In the left‐handed band of the nonlinear metamaterial, a higher‐order nonlinear Schrödinger equation is obtained, while in the frequency band gap, a dissipative short‐pulse equation is derived. In both cases, dissipation is described by linear terms, which lead to an exponential decay of the solutions. The decay rates, that is, the inverses of the linear loss coefficients in these two models, are found in terms of the dielectric and magnetic properties of the metamaterial. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.3987</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-02, Vol.41 (3), p.952-958
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_1988845866
source Wiley Online Library Journals Frontfile Complete
subjects 35C08
35Q55
Decay rate
Dielectric properties
Dissipation
electromagnetic waves
losses
Magnetic properties
Metamaterials
Nonlinear analysis
nonlinear Schrödinger equation
Perturbation methods
Pulse propagation
Schrodinger equation
short pulse equation
subclass 78A60
Wave propagation
title Modeling of ultrashort pulse propagation in lossy nonlinear metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20ultrashort%20pulse%20propagation%20in%20lossy%20nonlinear%20metamaterials&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Tsitsas,%20Nikolaos%20L.&rft.date=2018-02&rft.volume=41&rft.issue=3&rft.spage=952&rft.epage=958&rft.pages=952-958&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.3987&rft_dat=%3Cproquest_cross%3E1988845866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988845866&rft_id=info:pmid/&rfr_iscdi=true