Impact force loss behavior of flocked surfaces
The impact force loss behavior of flocked energy absorbing materials (FEAM) was experimentally studied in the context of double-side flocked FEAM element layered structures. A ball drop test determined the force loss per cent (FL%) properties of various assembled panels. This study showed that: (a)...
Gespeichert in:
Veröffentlicht in: | Textile research journal 2018-02, Vol.88 (4), p.392-412 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 4 |
container_start_page | 392 |
container_title | Textile research journal |
container_volume | 88 |
creator | Lewis, Armand F Matos, Helio Rice, John M Kim, Yong K |
description | The impact force loss behavior of flocked energy absorbing materials (FEAM) was experimentally studied in the context of double-side flocked FEAM element layered structures. A ball drop test determined the force loss per cent (FL%) properties of various assembled panels. This study showed that: (a) FEAM layers are most effective when used in multiple layer configurations. (b) When fabricating multi-layer two-side flocked FEAM layer configurations, a film or fabric divider sheet should be placed between adjacent flocked layers to prevent the flocked fibers from intermeshing with each other during compressional deformation. (c) FEAM elements perforated with 6.4 mm (¼”) diameter holes, 12.7 mm (½”) off staggered centers, exhibit a higher FL% per areal density compared to non-perforated FEAM panels. (d) Promising improvements in FL% properties are found by sandwiching either foam or spacer fabric between two FEAM layers. These three-layer structures are found to have higher FL% values than individual foam or spacer fabric components. A possible synergistic effect might be operating. (e) Low strain rate (5 and 50 mm/min) compressional load deflection rate data on combination FEAM/ vinyl nitrile foam/FEAM layers have shown that the initial ‘hump’ in the foam’s stress–strain curve is eliminated. FEAM layers and their foam and spacer fabric combinations should lead to creating effective impact energy absorbing pads for sport, military and civil servant applications. |
doi_str_mv | 10.1177/0040517516679149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988776838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0040517516679149</sage_id><sourcerecordid>1988776838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a280381eec09a60b8462b9591a5f1298deb5c1aadbce992bb1df74469787f0013</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMoWFfvHgues77Xpvk4yuLHwoIXPYckTXTXXVOTVvC_t6UeRPD0DvObecMQcomwRBTiGoBBg6JBzoVCpo5IgYJxKgSTx6SYZDrpp-Qs5x0ASClkQZbrQ2dcX4aYnC_3MefS-lfzuY2pjKEM--jefFvmIQXjfD4nJ8Hss7_4uQvyfHf7tHqgm8f79epmQ13NZE9NJaGW6L0DZThYyXhlVaPQNAErJVtvG4fGtNZ5pSprsQ2CMa6EFAEA6wW5mnO7FD8Gn3u9i0N6H19qVGNzwWUtRwpmyqWxePJBd2l7MOlLI-hpFf13ldFCZ0s2L_5X6H_8N9VuX8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988776838</pqid></control><display><type>article</type><title>Impact force loss behavior of flocked surfaces</title><source>SAGE Journals</source><creator>Lewis, Armand F ; Matos, Helio ; Rice, John M ; Kim, Yong K</creator><creatorcontrib>Lewis, Armand F ; Matos, Helio ; Rice, John M ; Kim, Yong K</creatorcontrib><description>The impact force loss behavior of flocked energy absorbing materials (FEAM) was experimentally studied in the context of double-side flocked FEAM element layered structures. A ball drop test determined the force loss per cent (FL%) properties of various assembled panels. This study showed that: (a) FEAM layers are most effective when used in multiple layer configurations. (b) When fabricating multi-layer two-side flocked FEAM layer configurations, a film or fabric divider sheet should be placed between adjacent flocked layers to prevent the flocked fibers from intermeshing with each other during compressional deformation. (c) FEAM elements perforated with 6.4 mm (¼”) diameter holes, 12.7 mm (½”) off staggered centers, exhibit a higher FL% per areal density compared to non-perforated FEAM panels. (d) Promising improvements in FL% properties are found by sandwiching either foam or spacer fabric between two FEAM layers. These three-layer structures are found to have higher FL% values than individual foam or spacer fabric components. A possible synergistic effect might be operating. (e) Low strain rate (5 and 50 mm/min) compressional load deflection rate data on combination FEAM/ vinyl nitrile foam/FEAM layers have shown that the initial ‘hump’ in the foam’s stress–strain curve is eliminated. FEAM layers and their foam and spacer fabric combinations should lead to creating effective impact energy absorbing pads for sport, military and civil servant applications.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/0040517516679149</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Authorship ; Configurations ; Deformation ; Energy ; Energy absorption ; Fabrics ; Football ; Helmets ; Ice hockey ; Impact loads ; Impact tests ; Injuries ; Load distribution ; Materials research ; Military applications ; Panels ; Strain rate ; Studies ; Synergistic effect ; Tension tests ; Textile fibers</subject><ispartof>Textile research journal, 2018-02, Vol.88 (4), p.392-412</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a280381eec09a60b8462b9591a5f1298deb5c1aadbce992bb1df74469787f0013</citedby><cites>FETCH-LOGICAL-c348t-a280381eec09a60b8462b9591a5f1298deb5c1aadbce992bb1df74469787f0013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0040517516679149$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0040517516679149$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Lewis, Armand F</creatorcontrib><creatorcontrib>Matos, Helio</creatorcontrib><creatorcontrib>Rice, John M</creatorcontrib><creatorcontrib>Kim, Yong K</creatorcontrib><title>Impact force loss behavior of flocked surfaces</title><title>Textile research journal</title><description>The impact force loss behavior of flocked energy absorbing materials (FEAM) was experimentally studied in the context of double-side flocked FEAM element layered structures. A ball drop test determined the force loss per cent (FL%) properties of various assembled panels. This study showed that: (a) FEAM layers are most effective when used in multiple layer configurations. (b) When fabricating multi-layer two-side flocked FEAM layer configurations, a film or fabric divider sheet should be placed between adjacent flocked layers to prevent the flocked fibers from intermeshing with each other during compressional deformation. (c) FEAM elements perforated with 6.4 mm (¼”) diameter holes, 12.7 mm (½”) off staggered centers, exhibit a higher FL% per areal density compared to non-perforated FEAM panels. (d) Promising improvements in FL% properties are found by sandwiching either foam or spacer fabric between two FEAM layers. These three-layer structures are found to have higher FL% values than individual foam or spacer fabric components. A possible synergistic effect might be operating. (e) Low strain rate (5 and 50 mm/min) compressional load deflection rate data on combination FEAM/ vinyl nitrile foam/FEAM layers have shown that the initial ‘hump’ in the foam’s stress–strain curve is eliminated. FEAM layers and their foam and spacer fabric combinations should lead to creating effective impact energy absorbing pads for sport, military and civil servant applications.</description><subject>Authorship</subject><subject>Configurations</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Fabrics</subject><subject>Football</subject><subject>Helmets</subject><subject>Ice hockey</subject><subject>Impact loads</subject><subject>Impact tests</subject><subject>Injuries</subject><subject>Load distribution</subject><subject>Materials research</subject><subject>Military applications</subject><subject>Panels</subject><subject>Strain rate</subject><subject>Studies</subject><subject>Synergistic effect</subject><subject>Tension tests</subject><subject>Textile fibers</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LxDAUxIMoWFfvHgues77Xpvk4yuLHwoIXPYckTXTXXVOTVvC_t6UeRPD0DvObecMQcomwRBTiGoBBg6JBzoVCpo5IgYJxKgSTx6SYZDrpp-Qs5x0ASClkQZbrQ2dcX4aYnC_3MefS-lfzuY2pjKEM--jefFvmIQXjfD4nJ8Hss7_4uQvyfHf7tHqgm8f79epmQ13NZE9NJaGW6L0DZThYyXhlVaPQNAErJVtvG4fGtNZ5pSprsQ2CMa6EFAEA6wW5mnO7FD8Gn3u9i0N6H19qVGNzwWUtRwpmyqWxePJBd2l7MOlLI-hpFf13ldFCZ0s2L_5X6H_8N9VuX8M</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Lewis, Armand F</creator><creator>Matos, Helio</creator><creator>Rice, John M</creator><creator>Kim, Yong K</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180201</creationdate><title>Impact force loss behavior of flocked surfaces</title><author>Lewis, Armand F ; Matos, Helio ; Rice, John M ; Kim, Yong K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a280381eec09a60b8462b9591a5f1298deb5c1aadbce992bb1df74469787f0013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Authorship</topic><topic>Configurations</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Fabrics</topic><topic>Football</topic><topic>Helmets</topic><topic>Ice hockey</topic><topic>Impact loads</topic><topic>Impact tests</topic><topic>Injuries</topic><topic>Load distribution</topic><topic>Materials research</topic><topic>Military applications</topic><topic>Panels</topic><topic>Strain rate</topic><topic>Studies</topic><topic>Synergistic effect</topic><topic>Tension tests</topic><topic>Textile fibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Armand F</creatorcontrib><creatorcontrib>Matos, Helio</creatorcontrib><creatorcontrib>Rice, John M</creatorcontrib><creatorcontrib>Kim, Yong K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>UK & Ireland Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Armand F</au><au>Matos, Helio</au><au>Rice, John M</au><au>Kim, Yong K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact force loss behavior of flocked surfaces</atitle><jtitle>Textile research journal</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>88</volume><issue>4</issue><spage>392</spage><epage>412</epage><pages>392-412</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>The impact force loss behavior of flocked energy absorbing materials (FEAM) was experimentally studied in the context of double-side flocked FEAM element layered structures. A ball drop test determined the force loss per cent (FL%) properties of various assembled panels. This study showed that: (a) FEAM layers are most effective when used in multiple layer configurations. (b) When fabricating multi-layer two-side flocked FEAM layer configurations, a film or fabric divider sheet should be placed between adjacent flocked layers to prevent the flocked fibers from intermeshing with each other during compressional deformation. (c) FEAM elements perforated with 6.4 mm (¼”) diameter holes, 12.7 mm (½”) off staggered centers, exhibit a higher FL% per areal density compared to non-perforated FEAM panels. (d) Promising improvements in FL% properties are found by sandwiching either foam or spacer fabric between two FEAM layers. These three-layer structures are found to have higher FL% values than individual foam or spacer fabric components. A possible synergistic effect might be operating. (e) Low strain rate (5 and 50 mm/min) compressional load deflection rate data on combination FEAM/ vinyl nitrile foam/FEAM layers have shown that the initial ‘hump’ in the foam’s stress–strain curve is eliminated. FEAM layers and their foam and spacer fabric combinations should lead to creating effective impact energy absorbing pads for sport, military and civil servant applications.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0040517516679149</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile research journal, 2018-02, Vol.88 (4), p.392-412 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_journals_1988776838 |
source | SAGE Journals |
subjects | Authorship Configurations Deformation Energy Energy absorption Fabrics Football Helmets Ice hockey Impact loads Impact tests Injuries Load distribution Materials research Military applications Panels Strain rate Studies Synergistic effect Tension tests Textile fibers |
title | Impact force loss behavior of flocked surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20force%20loss%20behavior%20of%20flocked%20surfaces&rft.jtitle=Textile%20research%20journal&rft.au=Lewis,%20Armand%20F&rft.date=2018-02-01&rft.volume=88&rft.issue=4&rft.spage=392&rft.epage=412&rft.pages=392-412&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/0040517516679149&rft_dat=%3Cproquest_cross%3E1988776838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988776838&rft_id=info:pmid/&rft_sage_id=10.1177_0040517516679149&rfr_iscdi=true |