Log canonical thresholds and Monge-Ampère masses

In this paper, we prove an inequality for log canonical thresholds and Monge-Ampère masses. The idea of proof is a combination of the Ohsawa-Takegoshi L 2 -extension theorem and inequalities in Åhag et al. (Adv Math 222:2036–2058, 2009 ) and Demailly and Pham (Acta Math 212:1–9, 2014 ).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2018-02, Vol.370 (1-2), p.555-566
1. Verfasser: Pham, Hoang Hiep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 1-2
container_start_page 555
container_title Mathematische annalen
container_volume 370
creator Pham, Hoang Hiep
description In this paper, we prove an inequality for log canonical thresholds and Monge-Ampère masses. The idea of proof is a combination of the Ohsawa-Takegoshi L 2 -extension theorem and inequalities in Åhag et al. (Adv Math 222:2036–2058, 2009 ) and Demailly and Pham (Acta Math 212:1–9, 2014 ).
doi_str_mv 10.1007/s00208-017-1518-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988543026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988543026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e158c632f52d8a04101f6d32738e62956288399eb22528beb544ca9a4e26c6e43</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXQrURtmxo_1llHESwqigdpyvN48lKyDnRT8Ef_Bj-FoKWiopph77mgOY9cItwhQ32UAAsMBa44KDacTNkIpiKOB-pSNylpxZQSes4uc1wAgANSI4SwuKu_62K-821T7ZQp5GTdtrlzfVi-xXwQ-2e6-v1Koti7nkC_ZWec2OVz9zjF7f7h_mz7x2evj83Qy416g3vOAyngtqFPUGgcSATvdCqqFCZoapckY0TRhTqTIzMNcSeld42Qg7XWQYsxuht5dih-HkPd2HQ-pLyctNsYoKYB0SeGQ8inmnEJnd2m1denTItijGTuYscWMPZqxVBgamFyy5cH0p_lf6AfZwWQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988543026</pqid></control><display><type>article</type><title>Log canonical thresholds and Monge-Ampère masses</title><source>Springer Nature</source><creator>Pham, Hoang Hiep</creator><creatorcontrib>Pham, Hoang Hiep</creatorcontrib><description>In this paper, we prove an inequality for log canonical thresholds and Monge-Ampère masses. The idea of proof is a combination of the Ohsawa-Takegoshi L 2 -extension theorem and inequalities in Åhag et al. (Adv Math 222:2036–2058, 2009 ) and Demailly and Pham (Acta Math 212:1–9, 2014 ).</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1518-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Thresholds</subject><ispartof>Mathematische annalen, 2018-02, Vol.370 (1-2), p.555-566</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e158c632f52d8a04101f6d32738e62956288399eb22528beb544ca9a4e26c6e43</citedby><cites>FETCH-LOGICAL-c316t-e158c632f52d8a04101f6d32738e62956288399eb22528beb544ca9a4e26c6e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-017-1518-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-017-1518-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pham, Hoang Hiep</creatorcontrib><title>Log canonical thresholds and Monge-Ampère masses</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>In this paper, we prove an inequality for log canonical thresholds and Monge-Ampère masses. The idea of proof is a combination of the Ohsawa-Takegoshi L 2 -extension theorem and inequalities in Åhag et al. (Adv Math 222:2036–2058, 2009 ) and Demailly and Pham (Acta Math 212:1–9, 2014 ).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Thresholds</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXQrURtmxo_1llHESwqigdpyvN48lKyDnRT8Ef_Bj-FoKWiopph77mgOY9cItwhQ32UAAsMBa44KDacTNkIpiKOB-pSNylpxZQSes4uc1wAgANSI4SwuKu_62K-821T7ZQp5GTdtrlzfVi-xXwQ-2e6-v1Koti7nkC_ZWec2OVz9zjF7f7h_mz7x2evj83Qy416g3vOAyngtqFPUGgcSATvdCqqFCZoapckY0TRhTqTIzMNcSeld42Qg7XWQYsxuht5dih-HkPd2HQ-pLyctNsYoKYB0SeGQ8inmnEJnd2m1denTItijGTuYscWMPZqxVBgamFyy5cH0p_lf6AfZwWQQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Pham, Hoang Hiep</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Log canonical thresholds and Monge-Ampère masses</title><author>Pham, Hoang Hiep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e158c632f52d8a04101f6d32738e62956288399eb22528beb544ca9a4e26c6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Hoang Hiep</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Hoang Hiep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Log canonical thresholds and Monge-Ampère masses</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>370</volume><issue>1-2</issue><spage>555</spage><epage>566</epage><pages>555-566</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>In this paper, we prove an inequality for log canonical thresholds and Monge-Ampère masses. The idea of proof is a combination of the Ohsawa-Takegoshi L 2 -extension theorem and inequalities in Åhag et al. (Adv Math 222:2036–2058, 2009 ) and Demailly and Pham (Acta Math 212:1–9, 2014 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1518-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2018-02, Vol.370 (1-2), p.555-566
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_1988543026
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Thresholds
title Log canonical thresholds and Monge-Ampère masses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Log%20canonical%20thresholds%20and%20Monge-Amp%C3%A8re%20masses&rft.jtitle=Mathematische%20annalen&rft.au=Pham,%20Hoang%20Hiep&rft.date=2018-02-01&rft.volume=370&rft.issue=1-2&rft.spage=555&rft.epage=566&rft.pages=555-566&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1518-2&rft_dat=%3Cproquest_cross%3E1988543026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988543026&rft_id=info:pmid/&rfr_iscdi=true