Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters
Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2018-02, Vol.42 (2), p.817-829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 2 |
container_start_page | 817 |
container_title | International journal of energy research |
container_volume | 42 |
creator | Cheon, Seong Jae Hong, Ser Gi Lee, Jung Hun Nam, Young Suk |
description | Summary
A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit.
The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor. |
doi_str_mv | 10.1002/er.3889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988386721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988386721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmtl0N5uj1PoDBUEUewvZdNJu2W7WZFvpzUfwGX0SU-vV0zDMN8PMEHIObACMpdfoB7wo5AHpAZMyARhOD0mP8ZwnkonpMTkJYclYrIHokfkthmreUN3MaIveOr_SjcGY63obqkCdpZpmjH1_fr3RBeqOBrf2UURKvZ5Vrgqucy3SboF-5dpFzDau7nRlqHHNBn2HPpySI6vrgGd_sU9e78Yvo4dk8nT_OLqZJIbnELfNOMq0lCXPdQ65EEOwGfLClsZw4ABFxiwv0QgJ1uQsS2Vsk5nIBJZoGe-Ti_3c1rv3NYZOLeO68ZigQBYFL3KRQlSXe2W8C8GjVa2vVtpvFTC1-6JCr3ZfjPJqLz-qGrf_MTV-_tU_rRNziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988386721</pqid></control><display><type>article</type><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><source>Wiley Blackwell Single Titles</source><creator>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</creator><creatorcontrib>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</creatorcontrib><description>Summary
A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit.
The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.3889</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Cladding ; Configurations ; Converters ; Design ; Emitters ; Enthalpy ; Fuels ; Heat ; Neutron radiation ; Nuclear fuel elements ; Photons ; power conversion efficiency ; PuO2 fuel ; Radiation dosage ; Radiation shielding ; Radioisotopes ; Rods ; RTPV (radioisotope thermophotovoltaic) ; Temperature</subject><ispartof>International journal of energy research, 2018-02, Vol.42 (2), p.817-829</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</citedby><cites>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</cites><orcidid>0000-0002-9720-571X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.3889$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.3889$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheon, Seong Jae</creatorcontrib><creatorcontrib>Hong, Ser Gi</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Nam, Young Suk</creatorcontrib><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><title>International journal of energy research</title><description>Summary
A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit.
The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</description><subject>Cladding</subject><subject>Configurations</subject><subject>Converters</subject><subject>Design</subject><subject>Emitters</subject><subject>Enthalpy</subject><subject>Fuels</subject><subject>Heat</subject><subject>Neutron radiation</subject><subject>Nuclear fuel elements</subject><subject>Photons</subject><subject>power conversion efficiency</subject><subject>PuO2 fuel</subject><subject>Radiation dosage</subject><subject>Radiation shielding</subject><subject>Radioisotopes</subject><subject>Rods</subject><subject>RTPV (radioisotope thermophotovoltaic)</subject><subject>Temperature</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmtl0N5uj1PoDBUEUewvZdNJu2W7WZFvpzUfwGX0SU-vV0zDMN8PMEHIObACMpdfoB7wo5AHpAZMyARhOD0mP8ZwnkonpMTkJYclYrIHokfkthmreUN3MaIveOr_SjcGY63obqkCdpZpmjH1_fr3RBeqOBrf2UURKvZ5Vrgqucy3SboF-5dpFzDau7nRlqHHNBn2HPpySI6vrgGd_sU9e78Yvo4dk8nT_OLqZJIbnELfNOMq0lCXPdQ65EEOwGfLClsZw4ABFxiwv0QgJ1uQsS2Vsk5nIBJZoGe-Ti_3c1rv3NYZOLeO68ZigQBYFL3KRQlSXe2W8C8GjVa2vVtpvFTC1-6JCr3ZfjPJqLz-qGrf_MTV-_tU_rRNziA</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Cheon, Seong Jae</creator><creator>Hong, Ser Gi</creator><creator>Lee, Jung Hun</creator><creator>Nam, Young Suk</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9720-571X</orcidid></search><sort><creationdate>201802</creationdate><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><author>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cladding</topic><topic>Configurations</topic><topic>Converters</topic><topic>Design</topic><topic>Emitters</topic><topic>Enthalpy</topic><topic>Fuels</topic><topic>Heat</topic><topic>Neutron radiation</topic><topic>Nuclear fuel elements</topic><topic>Photons</topic><topic>power conversion efficiency</topic><topic>PuO2 fuel</topic><topic>Radiation dosage</topic><topic>Radiation shielding</topic><topic>Radioisotopes</topic><topic>Rods</topic><topic>RTPV (radioisotope thermophotovoltaic)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Seong Jae</creatorcontrib><creatorcontrib>Hong, Ser Gi</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Nam, Young Suk</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Seong Jae</au><au>Hong, Ser Gi</au><au>Lee, Jung Hun</au><au>Nam, Young Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</atitle><jtitle>International journal of energy research</jtitle><date>2018-02</date><risdate>2018</risdate><volume>42</volume><issue>2</issue><spage>817</spage><epage>829</epage><pages>817-829</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit.
The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.3889</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9720-571X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2018-02, Vol.42 (2), p.817-829 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_1988386721 |
source | Wiley Blackwell Single Titles |
subjects | Cladding Configurations Converters Design Emitters Enthalpy Fuels Heat Neutron radiation Nuclear fuel elements Photons power conversion efficiency PuO2 fuel Radiation dosage Radiation shielding Radioisotopes Rods RTPV (radioisotope thermophotovoltaic) Temperature |
title | Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20performance%20analysis%20of%20a%20500%E2%80%90W%20heat%20source%20for%20radioisotope%20thermophotovoltaic%20converters&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Cheon,%20Seong%20Jae&rft.date=2018-02&rft.volume=42&rft.issue=2&rft.spage=817&rft.epage=829&rft.pages=817-829&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.3889&rft_dat=%3Cproquest_cross%3E1988386721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988386721&rft_id=info:pmid/&rfr_iscdi=true |