Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters

Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2018-02, Vol.42 (2), p.817-829
Hauptverfasser: Cheon, Seong Jae, Hong, Ser Gi, Lee, Jung Hun, Nam, Young Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 2
container_start_page 817
container_title International journal of energy research
container_volume 42
creator Cheon, Seong Jae
Hong, Ser Gi
Lee, Jung Hun
Nam, Young Suk
description Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit. The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.
doi_str_mv 10.1002/er.3889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1988386721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988386721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmtl0N5uj1PoDBUEUewvZdNJu2W7WZFvpzUfwGX0SU-vV0zDMN8PMEHIObACMpdfoB7wo5AHpAZMyARhOD0mP8ZwnkonpMTkJYclYrIHokfkthmreUN3MaIveOr_SjcGY63obqkCdpZpmjH1_fr3RBeqOBrf2UURKvZ5Vrgqucy3SboF-5dpFzDau7nRlqHHNBn2HPpySI6vrgGd_sU9e78Yvo4dk8nT_OLqZJIbnELfNOMq0lCXPdQ65EEOwGfLClsZw4ABFxiwv0QgJ1uQsS2Vsk5nIBJZoGe-Ti_3c1rv3NYZOLeO68ZigQBYFL3KRQlSXe2W8C8GjVa2vVtpvFTC1-6JCr3ZfjPJqLz-qGrf_MTV-_tU_rRNziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988386721</pqid></control><display><type>article</type><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><source>Wiley Blackwell Single Titles</source><creator>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</creator><creatorcontrib>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</creatorcontrib><description>Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit. The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.3889</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Cladding ; Configurations ; Converters ; Design ; Emitters ; Enthalpy ; Fuels ; Heat ; Neutron radiation ; Nuclear fuel elements ; Photons ; power conversion efficiency ; PuO2 fuel ; Radiation dosage ; Radiation shielding ; Radioisotopes ; Rods ; RTPV (radioisotope thermophotovoltaic) ; Temperature</subject><ispartof>International journal of energy research, 2018-02, Vol.42 (2), p.817-829</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</citedby><cites>FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</cites><orcidid>0000-0002-9720-571X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.3889$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.3889$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheon, Seong Jae</creatorcontrib><creatorcontrib>Hong, Ser Gi</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Nam, Young Suk</creatorcontrib><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><title>International journal of energy research</title><description>Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit. The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</description><subject>Cladding</subject><subject>Configurations</subject><subject>Converters</subject><subject>Design</subject><subject>Emitters</subject><subject>Enthalpy</subject><subject>Fuels</subject><subject>Heat</subject><subject>Neutron radiation</subject><subject>Nuclear fuel elements</subject><subject>Photons</subject><subject>power conversion efficiency</subject><subject>PuO2 fuel</subject><subject>Radiation dosage</subject><subject>Radiation shielding</subject><subject>Radioisotopes</subject><subject>Rods</subject><subject>RTPV (radioisotope thermophotovoltaic)</subject><subject>Temperature</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmtl0N5uj1PoDBUEUewvZdNJu2W7WZFvpzUfwGX0SU-vV0zDMN8PMEHIObACMpdfoB7wo5AHpAZMyARhOD0mP8ZwnkonpMTkJYclYrIHokfkthmreUN3MaIveOr_SjcGY63obqkCdpZpmjH1_fr3RBeqOBrf2UURKvZ5Vrgqucy3SboF-5dpFzDau7nRlqHHNBn2HPpySI6vrgGd_sU9e78Yvo4dk8nT_OLqZJIbnELfNOMq0lCXPdQ65EEOwGfLClsZw4ABFxiwv0QgJ1uQsS2Vsk5nIBJZoGe-Ti_3c1rv3NYZOLeO68ZigQBYFL3KRQlSXe2W8C8GjVa2vVtpvFTC1-6JCr3ZfjPJqLz-qGrf_MTV-_tU_rRNziA</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Cheon, Seong Jae</creator><creator>Hong, Ser Gi</creator><creator>Lee, Jung Hun</creator><creator>Nam, Young Suk</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9720-571X</orcidid></search><sort><creationdate>201802</creationdate><title>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</title><author>Cheon, Seong Jae ; Hong, Ser Gi ; Lee, Jung Hun ; Nam, Young Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3619-153e92b9b36a6167741f5e38fbcc31311850f3bec791fc6052961995757ebef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cladding</topic><topic>Configurations</topic><topic>Converters</topic><topic>Design</topic><topic>Emitters</topic><topic>Enthalpy</topic><topic>Fuels</topic><topic>Heat</topic><topic>Neutron radiation</topic><topic>Nuclear fuel elements</topic><topic>Photons</topic><topic>power conversion efficiency</topic><topic>PuO2 fuel</topic><topic>Radiation dosage</topic><topic>Radiation shielding</topic><topic>Radioisotopes</topic><topic>Rods</topic><topic>RTPV (radioisotope thermophotovoltaic)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Seong Jae</creatorcontrib><creatorcontrib>Hong, Ser Gi</creatorcontrib><creatorcontrib>Lee, Jung Hun</creatorcontrib><creatorcontrib>Nam, Young Suk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Seong Jae</au><au>Hong, Ser Gi</au><au>Lee, Jung Hun</au><au>Nam, Young Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters</atitle><jtitle>International journal of energy research</jtitle><date>2018-02</date><risdate>2018</risdate><volume>42</volume><issue>2</issue><spage>817</spage><epage>829</epage><pages>817-829</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary A radioisotope thermophotovoltaic (RTPV) system effectively converts the decay heat of radioisotopes into electricity via thermally radiated photons. In this work, a 500‐W thermal heat source unit including 238PuO2 radioisotope fuel, shielding material, and selective emitter is designed from the viewpoint of radiation safety, thermal performance, and overall conversion efficiency by considering various shielding materials, fuel configurations, and packing factor (PF), defined as the ratio of fuel region volume to total heat source enclosure volume including fuel cladding and shield. The design study starts with a reference cubic configuration and extends to the more complicated configurations having separate cylindrical fuels. The results of the study showed that the heat source unit design suggested here can reduce the total radiation dose, peak neutron fluence, and maximum temperature using separate cylindrical fuel rods. For example, a design having a separated 3 × 3 cylindrical fuel rod array of 30% PF increases the overall efficiency by ~39% with similar maximum temperature and radiation doses in comparison with the reference heat source unit with a single cubic module and a 10% PF. This demonstrates the importance of the proper design of the RTPV heat source unit. The suggested 500‐W RTPV having 3 × 3 cylindrical fuels reduces total radiation dose, peak neutron flux, and peak temperature in comparison with the one having a single cubic fuel. This fact makes it possible to improve the power conversion efficiency by increasing packing factor.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.3889</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9720-571X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2018-02, Vol.42 (2), p.817-829
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_1988386721
source Wiley Blackwell Single Titles
subjects Cladding
Configurations
Converters
Design
Emitters
Enthalpy
Fuels
Heat
Neutron radiation
Nuclear fuel elements
Photons
power conversion efficiency
PuO2 fuel
Radiation dosage
Radiation shielding
Radioisotopes
Rods
RTPV (radioisotope thermophotovoltaic)
Temperature
title Design and performance analysis of a 500‐W heat source for radioisotope thermophotovoltaic converters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20performance%20analysis%20of%20a%20500%E2%80%90W%20heat%20source%20for%20radioisotope%20thermophotovoltaic%20converters&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Cheon,%20Seong%20Jae&rft.date=2018-02&rft.volume=42&rft.issue=2&rft.spage=817&rft.epage=829&rft.pages=817-829&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.3889&rft_dat=%3Cproquest_cross%3E1988386721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988386721&rft_id=info:pmid/&rfr_iscdi=true