Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere
Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We der...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2017-12, Vol.122 (12), p.12,464-12,475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12,475 |
---|---|
container_issue | 12 |
container_start_page | 12,464 |
container_title | Journal of geophysical research. Space physics |
container_volume | 122 |
creator | Medvedev, Alexander S. Yiğit, Erdal Hartogh, Paul |
description | Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K.
Key Points
A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry
For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator
Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance |
doi_str_mv | 10.1002/2017JA024785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987987505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987987505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEtPgxgNU4sogaZK2OU6DlU2T-KMhjlWWOlumrSlJO7QbV248I09CWAfihGXJn-2fPksOgjOMLjFC0VWEcDLuo4gmKTsIOhGOeY9TFB3-aJKi4-DUuSXykfoRZp3gfWTKcGi1rLUXoizCh0aUtVZait3IqLBeQJiBWYt5CbWW4ahUqwZKCaHfZ1ZsdL0Nn8UGwntrKjEXv17X2jldtb0ud0bTBdi1cZUv8Pn24c_vm5PgSImVg9N97QZPw5vp4LY3uctGg_6kJ0kUsx5wwQuuiBQ4ojFhGCdAKUWEJFDMpEKYyBhRxRAlTCjBeEEQ5cAACjxLZqQbnLe-lTUvDbg6X5rGlv5kjnma-GSIeeqipaQ1zllQeWX1WthtjlH-_e_87789Tlr8Va9g-y-bj7PHPiOcMfIF6RyDng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987987505</pqid></control><display><type>article</type><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</creator><creatorcontrib>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</creatorcontrib><description>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K.
Key Points
A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry
For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator
Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024785</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Atmospheric circulation ; Atmospheric models ; Cooling rate ; Damping ; Drag ; Electromagnetic forces ; Equator ; F region ; Friction ; General circulation models ; Geomagnetic field ; Geomagnetism ; Geometry ; Gravitational waves ; Gravity wave drag ; Gravity wave propagation ; Gravity waves ; Harmonics ; Heating ; ion friction ; Ionosphere ; Ionospheric propagation ; Ions ; Lower atmosphere ; Magnetic fields ; Magnetic poles ; Magnetism ; Mesosphere ; Propagation ; Thermosphere ; thermosphere‐ionosphere ; Wave drag ; Wave propagation</subject><ispartof>Journal of geophysical research. Space physics, 2017-12, Vol.122 (12), p.12,464-12,475</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</citedby><cites>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</cites><orcidid>0000-0002-9550-6551 ; 0000-0002-2819-2521 ; 0000-0003-2713-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Medvedev, Alexander S.</creatorcontrib><creatorcontrib>Yiğit, Erdal</creatorcontrib><creatorcontrib>Hartogh, Paul</creatorcontrib><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><title>Journal of geophysical research. Space physics</title><description>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K.
Key Points
A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry
For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator
Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</description><subject>Anisotropy</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Cooling rate</subject><subject>Damping</subject><subject>Drag</subject><subject>Electromagnetic forces</subject><subject>Equator</subject><subject>F region</subject><subject>Friction</subject><subject>General circulation models</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Geometry</subject><subject>Gravitational waves</subject><subject>Gravity wave drag</subject><subject>Gravity wave propagation</subject><subject>Gravity waves</subject><subject>Harmonics</subject><subject>Heating</subject><subject>ion friction</subject><subject>Ionosphere</subject><subject>Ionospheric propagation</subject><subject>Ions</subject><subject>Lower atmosphere</subject><subject>Magnetic fields</subject><subject>Magnetic poles</subject><subject>Magnetism</subject><subject>Mesosphere</subject><subject>Propagation</subject><subject>Thermosphere</subject><subject>thermosphere‐ionosphere</subject><subject>Wave drag</subject><subject>Wave propagation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxisEEtPgxgNU4sogaZK2OU6DlU2T-KMhjlWWOlumrSlJO7QbV248I09CWAfihGXJn-2fPksOgjOMLjFC0VWEcDLuo4gmKTsIOhGOeY9TFB3-aJKi4-DUuSXykfoRZp3gfWTKcGi1rLUXoizCh0aUtVZait3IqLBeQJiBWYt5CbWW4ahUqwZKCaHfZ1ZsdL0Nn8UGwntrKjEXv17X2jldtb0ud0bTBdi1cZUv8Pn24c_vm5PgSImVg9N97QZPw5vp4LY3uctGg_6kJ0kUsx5wwQuuiBQ4ojFhGCdAKUWEJFDMpEKYyBhRxRAlTCjBeEEQ5cAACjxLZqQbnLe-lTUvDbg6X5rGlv5kjnma-GSIeeqipaQ1zllQeWX1WthtjlH-_e_87789Tlr8Va9g-y-bj7PHPiOcMfIF6RyDng</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Medvedev, Alexander S.</creator><creator>Yiğit, Erdal</creator><creator>Hartogh, Paul</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9550-6551</orcidid><orcidid>https://orcid.org/0000-0002-2819-2521</orcidid><orcidid>https://orcid.org/0000-0003-2713-8977</orcidid></search><sort><creationdate>201712</creationdate><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><author>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Cooling rate</topic><topic>Damping</topic><topic>Drag</topic><topic>Electromagnetic forces</topic><topic>Equator</topic><topic>F region</topic><topic>Friction</topic><topic>General circulation models</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Geometry</topic><topic>Gravitational waves</topic><topic>Gravity wave drag</topic><topic>Gravity wave propagation</topic><topic>Gravity waves</topic><topic>Harmonics</topic><topic>Heating</topic><topic>ion friction</topic><topic>Ionosphere</topic><topic>Ionospheric propagation</topic><topic>Ions</topic><topic>Lower atmosphere</topic><topic>Magnetic fields</topic><topic>Magnetic poles</topic><topic>Magnetism</topic><topic>Mesosphere</topic><topic>Propagation</topic><topic>Thermosphere</topic><topic>thermosphere‐ionosphere</topic><topic>Wave drag</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, Alexander S.</creatorcontrib><creatorcontrib>Yiğit, Erdal</creatorcontrib><creatorcontrib>Hartogh, Paul</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, Alexander S.</au><au>Yiğit, Erdal</au><au>Hartogh, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>122</volume><issue>12</issue><spage>12,464</spage><epage>12,475</epage><pages>12,464-12,475</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K.
Key Points
A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry
For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator
Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024785</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9550-6551</orcidid><orcidid>https://orcid.org/0000-0002-2819-2521</orcidid><orcidid>https://orcid.org/0000-0003-2713-8977</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2017-12, Vol.122 (12), p.12,464-12,475 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1987987505 |
source | Wiley Journals; Wiley Online Library (Open Access Collection) |
subjects | Anisotropy Atmospheric circulation Atmospheric models Cooling rate Damping Drag Electromagnetic forces Equator F region Friction General circulation models Geomagnetic field Geomagnetism Geometry Gravitational waves Gravity wave drag Gravity wave propagation Gravity waves Harmonics Heating ion friction Ionosphere Ionospheric propagation Ions Lower atmosphere Magnetic fields Magnetic poles Magnetism Mesosphere Propagation Thermosphere thermosphere‐ionosphere Wave drag Wave propagation |
title | Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Friction%20and%20Quantification%20of%20the%20Geomagnetic%20Influence%20on%20Gravity%20Wave%20Propagation%20and%20Dissipation%20in%20the%20Thermosphere%E2%80%90Ionosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Medvedev,%20Alexander%20S.&rft.date=2017-12&rft.volume=122&rft.issue=12&rft.spage=12,464&rft.epage=12,475&rft.pages=12,464-12,475&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024785&rft_dat=%3Cproquest_cross%3E1987987505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987987505&rft_id=info:pmid/&rfr_iscdi=true |