Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere

Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-12, Vol.122 (12), p.12,464-12,475
Hauptverfasser: Medvedev, Alexander S., Yiğit, Erdal, Hartogh, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12,475
container_issue 12
container_start_page 12,464
container_title Journal of geophysical research. Space physics
container_volume 122
creator Medvedev, Alexander S.
Yiğit, Erdal
Hartogh, Paul
description Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K. Key Points A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance
doi_str_mv 10.1002/2017JA024785
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987987505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987987505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEtPgxgNU4sogaZK2OU6DlU2T-KMhjlWWOlumrSlJO7QbV248I09CWAfihGXJn-2fPksOgjOMLjFC0VWEcDLuo4gmKTsIOhGOeY9TFB3-aJKi4-DUuSXykfoRZp3gfWTKcGi1rLUXoizCh0aUtVZait3IqLBeQJiBWYt5CbWW4ahUqwZKCaHfZ1ZsdL0Nn8UGwntrKjEXv17X2jldtb0ud0bTBdi1cZUv8Pn24c_vm5PgSImVg9N97QZPw5vp4LY3uctGg_6kJ0kUsx5wwQuuiBQ4ojFhGCdAKUWEJFDMpEKYyBhRxRAlTCjBeEEQ5cAACjxLZqQbnLe-lTUvDbg6X5rGlv5kjnma-GSIeeqipaQ1zllQeWX1WthtjlH-_e_87789Tlr8Va9g-y-bj7PHPiOcMfIF6RyDng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987987505</pqid></control><display><type>article</type><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</creator><creatorcontrib>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</creatorcontrib><description>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K. Key Points A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024785</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Atmospheric circulation ; Atmospheric models ; Cooling rate ; Damping ; Drag ; Electromagnetic forces ; Equator ; F region ; Friction ; General circulation models ; Geomagnetic field ; Geomagnetism ; Geometry ; Gravitational waves ; Gravity wave drag ; Gravity wave propagation ; Gravity waves ; Harmonics ; Heating ; ion friction ; Ionosphere ; Ionospheric propagation ; Ions ; Lower atmosphere ; Magnetic fields ; Magnetic poles ; Magnetism ; Mesosphere ; Propagation ; Thermosphere ; thermosphere‐ionosphere ; Wave drag ; Wave propagation</subject><ispartof>Journal of geophysical research. Space physics, 2017-12, Vol.122 (12), p.12,464-12,475</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</citedby><cites>FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</cites><orcidid>0000-0002-9550-6551 ; 0000-0002-2819-2521 ; 0000-0003-2713-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Medvedev, Alexander S.</creatorcontrib><creatorcontrib>Yiğit, Erdal</creatorcontrib><creatorcontrib>Hartogh, Paul</creatorcontrib><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><title>Journal of geophysical research. Space physics</title><description>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K. Key Points A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</description><subject>Anisotropy</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Cooling rate</subject><subject>Damping</subject><subject>Drag</subject><subject>Electromagnetic forces</subject><subject>Equator</subject><subject>F region</subject><subject>Friction</subject><subject>General circulation models</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Geometry</subject><subject>Gravitational waves</subject><subject>Gravity wave drag</subject><subject>Gravity wave propagation</subject><subject>Gravity waves</subject><subject>Harmonics</subject><subject>Heating</subject><subject>ion friction</subject><subject>Ionosphere</subject><subject>Ionospheric propagation</subject><subject>Ions</subject><subject>Lower atmosphere</subject><subject>Magnetic fields</subject><subject>Magnetic poles</subject><subject>Magnetism</subject><subject>Mesosphere</subject><subject>Propagation</subject><subject>Thermosphere</subject><subject>thermosphere‐ionosphere</subject><subject>Wave drag</subject><subject>Wave propagation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxisEEtPgxgNU4sogaZK2OU6DlU2T-KMhjlWWOlumrSlJO7QbV248I09CWAfihGXJn-2fPksOgjOMLjFC0VWEcDLuo4gmKTsIOhGOeY9TFB3-aJKi4-DUuSXykfoRZp3gfWTKcGi1rLUXoizCh0aUtVZait3IqLBeQJiBWYt5CbWW4ahUqwZKCaHfZ1ZsdL0Nn8UGwntrKjEXv17X2jldtb0ud0bTBdi1cZUv8Pn24c_vm5PgSImVg9N97QZPw5vp4LY3uctGg_6kJ0kUsx5wwQuuiBQ4ojFhGCdAKUWEJFDMpEKYyBhRxRAlTCjBeEEQ5cAACjxLZqQbnLe-lTUvDbg6X5rGlv5kjnma-GSIeeqipaQ1zllQeWX1WthtjlH-_e_87789Tlr8Va9g-y-bj7PHPiOcMfIF6RyDng</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Medvedev, Alexander S.</creator><creator>Yiğit, Erdal</creator><creator>Hartogh, Paul</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9550-6551</orcidid><orcidid>https://orcid.org/0000-0002-2819-2521</orcidid><orcidid>https://orcid.org/0000-0003-2713-8977</orcidid></search><sort><creationdate>201712</creationdate><title>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</title><author>Medvedev, Alexander S. ; Yiğit, Erdal ; Hartogh, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3265-e9a9d9f3ca124635117e4440337edbcf013c604f50435afa59d3049e5eed1b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Cooling rate</topic><topic>Damping</topic><topic>Drag</topic><topic>Electromagnetic forces</topic><topic>Equator</topic><topic>F region</topic><topic>Friction</topic><topic>General circulation models</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Geometry</topic><topic>Gravitational waves</topic><topic>Gravity wave drag</topic><topic>Gravity wave propagation</topic><topic>Gravity waves</topic><topic>Harmonics</topic><topic>Heating</topic><topic>ion friction</topic><topic>Ionosphere</topic><topic>Ionospheric propagation</topic><topic>Ions</topic><topic>Lower atmosphere</topic><topic>Magnetic fields</topic><topic>Magnetic poles</topic><topic>Magnetism</topic><topic>Mesosphere</topic><topic>Propagation</topic><topic>Thermosphere</topic><topic>thermosphere‐ionosphere</topic><topic>Wave drag</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, Alexander S.</creatorcontrib><creatorcontrib>Yiğit, Erdal</creatorcontrib><creatorcontrib>Hartogh, Paul</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, Alexander S.</au><au>Yiğit, Erdal</au><au>Hartogh, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>122</volume><issue>12</issue><spage>12,464</spage><epage>12,475</epage><pages>12,464-12,475</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Motions of neutrals and ions in the thermosphere‐ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)‐induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion‐neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s−1 d−1, cooling/heating rates of more than 15 K d−1, and in GW temperature variance of disturbances by more than 5 K. Key Points A new formalism is presented for gravity wave damping by ion friction for arbitrary propagation and geomagnetic field geometry For harmonics propagating meridionally, ion friction maximizes over the magnetic poles and decays to zero over the equator Estimated the influence of anisotropy of ion damping on gravity wave drag, induced cooling/heating rates, and temperature variance</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024785</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9550-6551</orcidid><orcidid>https://orcid.org/0000-0002-2819-2521</orcidid><orcidid>https://orcid.org/0000-0003-2713-8977</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-12, Vol.122 (12), p.12,464-12,475
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1987987505
source Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Anisotropy
Atmospheric circulation
Atmospheric models
Cooling rate
Damping
Drag
Electromagnetic forces
Equator
F region
Friction
General circulation models
Geomagnetic field
Geomagnetism
Geometry
Gravitational waves
Gravity wave drag
Gravity wave propagation
Gravity waves
Harmonics
Heating
ion friction
Ionosphere
Ionospheric propagation
Ions
Lower atmosphere
Magnetic fields
Magnetic poles
Magnetism
Mesosphere
Propagation
Thermosphere
thermosphere‐ionosphere
Wave drag
Wave propagation
title Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere‐Ionosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Friction%20and%20Quantification%20of%20the%20Geomagnetic%20Influence%20on%20Gravity%20Wave%20Propagation%20and%20Dissipation%20in%20the%20Thermosphere%E2%80%90Ionosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Medvedev,%20Alexander%20S.&rft.date=2017-12&rft.volume=122&rft.issue=12&rft.spage=12,464&rft.epage=12,475&rft.pages=12,464-12,475&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024785&rft_dat=%3Cproquest_cross%3E1987987505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987987505&rft_id=info:pmid/&rfr_iscdi=true