A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells

A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of organic chemistry 2018-01, Vol.7 (1), p.220-226
Hauptverfasser: Srivani, Doli, Gupta, Akhil, Bhosale, Sidhanath V., Ohkubo, Kei, Bhosale, Rajesh S., Fukuzumi, Shunichi, Bilic, Ante, Jones, Lathe A., Bhosale, Sheshanath V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 1
container_start_page 220
container_title Asian journal of organic chemistry
container_volume 7
creator Srivani, Doli
Gupta, Akhil
Bhosale, Sidhanath V.
Ohkubo, Kei
Bhosale, Rajesh S.
Fukuzumi, Shunichi
Bilic, Ante
Jones, Lathe A.
Bhosale, Sheshanath V.
description A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations. Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.
doi_str_mv 10.1002/ajoc.201700557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987652595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987652595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</originalsourceid><addsrcrecordid>eNqFkb9OwzAQxiMEEghYmS2x0mIncRyzlYjyRwiQCnN0TS7ExbWDnQh14xGQmHk5noSEIhi55e4-_b674QuCA0bHjNLwGBa2GIeUCUo5FxvBTshkNOIp45u_MxXbwb73C9qXEJKFcif4mJB7p5oazUrDUhn8fH2_gaZua9BosFRqqcpBnHZao-ulgYfyhMxWpq3RK39E7mrbWmXKrsCSZDW4RyQzbMBBq6whYEoys7obls_XtztnC_Qe5hrJaaefyAW26OyiM8U33qPgSIZa-71gqwLtcf-n7wYP07P77GJ0fXt-mU2uR0WURmLEqZinIXCaxDyWICMWR5iElRBA01gKTLGKk7gIWTUvJQKtsEdikEUMLJEQ7QaH67uNs88d-jZf2M6Z_mXOZCoSHnLJe2q8pgpnvXdY5Y1TS3CrnNF8SCEfUsh_U-gNcm14URpX_9D55Oo2-_N-AXEQkWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987652595</pqid></control><display><type>article</type><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</creator><creatorcontrib>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</creatorcontrib><description>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations. Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</description><identifier>ISSN: 2193-5807</identifier><identifier>EISSN: 2193-5815</identifier><identifier>DOI: 10.1002/ajoc.201700557</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Atomic force microscopy ; Buckminsterfullerene ; bulk heterojunctions ; Decay rate ; Electron transfer ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Inspection ; N-type semiconductors ; naphthalenediimide ; Nondestructive testing ; Organic chemistry ; photoinduced charge separation ; Photovoltaic cells ; Shift reaction ; Solar cells ; triphenylamine</subject><ispartof>Asian journal of organic chemistry, 2018-01, Vol.7 (1), p.220-226</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</citedby><cites>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</cites><orcidid>0000-0003-0979-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajoc.201700557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajoc.201700557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Srivani, Doli</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Bhosale, Sidhanath V.</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Bhosale, Rajesh S.</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><creatorcontrib>Bilic, Ante</creatorcontrib><creatorcontrib>Jones, Lathe A.</creatorcontrib><creatorcontrib>Bhosale, Sheshanath V.</creatorcontrib><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><title>Asian journal of organic chemistry</title><description>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations. Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</description><subject>Annealing</subject><subject>Atomic force microscopy</subject><subject>Buckminsterfullerene</subject><subject>bulk heterojunctions</subject><subject>Decay rate</subject><subject>Electron transfer</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Inspection</subject><subject>N-type semiconductors</subject><subject>naphthalenediimide</subject><subject>Nondestructive testing</subject><subject>Organic chemistry</subject><subject>photoinduced charge separation</subject><subject>Photovoltaic cells</subject><subject>Shift reaction</subject><subject>Solar cells</subject><subject>triphenylamine</subject><issn>2193-5807</issn><issn>2193-5815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb9OwzAQxiMEEghYmS2x0mIncRyzlYjyRwiQCnN0TS7ExbWDnQh14xGQmHk5noSEIhi55e4-_b674QuCA0bHjNLwGBa2GIeUCUo5FxvBTshkNOIp45u_MxXbwb73C9qXEJKFcif4mJB7p5oazUrDUhn8fH2_gaZua9BosFRqqcpBnHZao-ulgYfyhMxWpq3RK39E7mrbWmXKrsCSZDW4RyQzbMBBq6whYEoys7obls_XtztnC_Qe5hrJaaefyAW26OyiM8U33qPgSIZa-71gqwLtcf-n7wYP07P77GJ0fXt-mU2uR0WURmLEqZinIXCaxDyWICMWR5iElRBA01gKTLGKk7gIWTUvJQKtsEdikEUMLJEQ7QaH67uNs88d-jZf2M6Z_mXOZCoSHnLJe2q8pgpnvXdY5Y1TS3CrnNF8SCEfUsh_U-gNcm14URpX_9D55Oo2-_N-AXEQkWU</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Srivani, Doli</creator><creator>Gupta, Akhil</creator><creator>Bhosale, Sidhanath V.</creator><creator>Ohkubo, Kei</creator><creator>Bhosale, Rajesh S.</creator><creator>Fukuzumi, Shunichi</creator><creator>Bilic, Ante</creator><creator>Jones, Lathe A.</creator><creator>Bhosale, Sheshanath V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0979-8250</orcidid></search><sort><creationdate>201801</creationdate><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><author>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Atomic force microscopy</topic><topic>Buckminsterfullerene</topic><topic>bulk heterojunctions</topic><topic>Decay rate</topic><topic>Electron transfer</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Inspection</topic><topic>N-type semiconductors</topic><topic>naphthalenediimide</topic><topic>Nondestructive testing</topic><topic>Organic chemistry</topic><topic>photoinduced charge separation</topic><topic>Photovoltaic cells</topic><topic>Shift reaction</topic><topic>Solar cells</topic><topic>triphenylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivani, Doli</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Bhosale, Sidhanath V.</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Bhosale, Rajesh S.</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><creatorcontrib>Bilic, Ante</creatorcontrib><creatorcontrib>Jones, Lathe A.</creatorcontrib><creatorcontrib>Bhosale, Sheshanath V.</creatorcontrib><collection>CrossRef</collection><jtitle>Asian journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivani, Doli</au><au>Gupta, Akhil</au><au>Bhosale, Sidhanath V.</au><au>Ohkubo, Kei</au><au>Bhosale, Rajesh S.</au><au>Fukuzumi, Shunichi</au><au>Bilic, Ante</au><au>Jones, Lathe A.</au><au>Bhosale, Sheshanath V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</atitle><jtitle>Asian journal of organic chemistry</jtitle><date>2018-01</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>220</spage><epage>226</epage><pages>220-226</pages><issn>2193-5807</issn><eissn>2193-5815</eissn><abstract>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations. Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ajoc.201700557</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0979-8250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-5807
ispartof Asian journal of organic chemistry, 2018-01, Vol.7 (1), p.220-226
issn 2193-5807
2193-5815
language eng
recordid cdi_proquest_journals_1987652595
source Wiley Online Library Journals Frontfile Complete
subjects Annealing
Atomic force microscopy
Buckminsterfullerene
bulk heterojunctions
Decay rate
Electron transfer
Energy conversion efficiency
Fullerenes
Heterojunctions
Inspection
N-type semiconductors
naphthalenediimide
Nondestructive testing
Organic chemistry
photoinduced charge separation
Photovoltaic cells
Shift reaction
Solar cells
triphenylamine
title A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triphenylamine%E2%80%93Naphthalenediimide%E2%80%93Fullerene%20Triad:%20Synthesis,%20Photoinduced%20Charge%20Separation%20and%20Solution%E2%80%90Processable%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Asian%20journal%20of%20organic%20chemistry&rft.au=Srivani,%20Doli&rft.date=2018-01&rft.volume=7&rft.issue=1&rft.spage=220&rft.epage=226&rft.pages=220-226&rft.issn=2193-5807&rft.eissn=2193-5815&rft_id=info:doi/10.1002/ajoc.201700557&rft_dat=%3Cproquest_cross%3E1987652595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987652595&rft_id=info:pmid/&rfr_iscdi=true