A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells
A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI o...
Gespeichert in:
Veröffentlicht in: | Asian journal of organic chemistry 2018-01, Vol.7 (1), p.220-226 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 220 |
container_title | Asian journal of organic chemistry |
container_volume | 7 |
creator | Srivani, Doli Gupta, Akhil Bhosale, Sidhanath V. Ohkubo, Kei Bhosale, Rajesh S. Fukuzumi, Shunichi Bilic, Ante Jones, Lathe A. Bhosale, Sheshanath V. |
description | A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations.
Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing. |
doi_str_mv | 10.1002/ajoc.201700557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987652595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987652595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</originalsourceid><addsrcrecordid>eNqFkb9OwzAQxiMEEghYmS2x0mIncRyzlYjyRwiQCnN0TS7ExbWDnQh14xGQmHk5noSEIhi55e4-_b674QuCA0bHjNLwGBa2GIeUCUo5FxvBTshkNOIp45u_MxXbwb73C9qXEJKFcif4mJB7p5oazUrDUhn8fH2_gaZua9BosFRqqcpBnHZao-ulgYfyhMxWpq3RK39E7mrbWmXKrsCSZDW4RyQzbMBBq6whYEoys7obls_XtztnC_Qe5hrJaaefyAW26OyiM8U33qPgSIZa-71gqwLtcf-n7wYP07P77GJ0fXt-mU2uR0WURmLEqZinIXCaxDyWICMWR5iElRBA01gKTLGKk7gIWTUvJQKtsEdikEUMLJEQ7QaH67uNs88d-jZf2M6Z_mXOZCoSHnLJe2q8pgpnvXdY5Y1TS3CrnNF8SCEfUsh_U-gNcm14URpX_9D55Oo2-_N-AXEQkWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987652595</pqid></control><display><type>article</type><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</creator><creatorcontrib>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</creatorcontrib><description>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations.
Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</description><identifier>ISSN: 2193-5807</identifier><identifier>EISSN: 2193-5815</identifier><identifier>DOI: 10.1002/ajoc.201700557</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Atomic force microscopy ; Buckminsterfullerene ; bulk heterojunctions ; Decay rate ; Electron transfer ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Inspection ; N-type semiconductors ; naphthalenediimide ; Nondestructive testing ; Organic chemistry ; photoinduced charge separation ; Photovoltaic cells ; Shift reaction ; Solar cells ; triphenylamine</subject><ispartof>Asian journal of organic chemistry, 2018-01, Vol.7 (1), p.220-226</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</citedby><cites>FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</cites><orcidid>0000-0003-0979-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajoc.201700557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajoc.201700557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Srivani, Doli</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Bhosale, Sidhanath V.</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Bhosale, Rajesh S.</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><creatorcontrib>Bilic, Ante</creatorcontrib><creatorcontrib>Jones, Lathe A.</creatorcontrib><creatorcontrib>Bhosale, Sheshanath V.</creatorcontrib><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><title>Asian journal of organic chemistry</title><description>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations.
Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</description><subject>Annealing</subject><subject>Atomic force microscopy</subject><subject>Buckminsterfullerene</subject><subject>bulk heterojunctions</subject><subject>Decay rate</subject><subject>Electron transfer</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Inspection</subject><subject>N-type semiconductors</subject><subject>naphthalenediimide</subject><subject>Nondestructive testing</subject><subject>Organic chemistry</subject><subject>photoinduced charge separation</subject><subject>Photovoltaic cells</subject><subject>Shift reaction</subject><subject>Solar cells</subject><subject>triphenylamine</subject><issn>2193-5807</issn><issn>2193-5815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb9OwzAQxiMEEghYmS2x0mIncRyzlYjyRwiQCnN0TS7ExbWDnQh14xGQmHk5noSEIhi55e4-_b674QuCA0bHjNLwGBa2GIeUCUo5FxvBTshkNOIp45u_MxXbwb73C9qXEJKFcif4mJB7p5oazUrDUhn8fH2_gaZua9BosFRqqcpBnHZao-ulgYfyhMxWpq3RK39E7mrbWmXKrsCSZDW4RyQzbMBBq6whYEoys7obls_XtztnC_Qe5hrJaaefyAW26OyiM8U33qPgSIZa-71gqwLtcf-n7wYP07P77GJ0fXt-mU2uR0WURmLEqZinIXCaxDyWICMWR5iElRBA01gKTLGKk7gIWTUvJQKtsEdikEUMLJEQ7QaH67uNs88d-jZf2M6Z_mXOZCoSHnLJe2q8pgpnvXdY5Y1TS3CrnNF8SCEfUsh_U-gNcm14URpX_9D55Oo2-_N-AXEQkWU</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Srivani, Doli</creator><creator>Gupta, Akhil</creator><creator>Bhosale, Sidhanath V.</creator><creator>Ohkubo, Kei</creator><creator>Bhosale, Rajesh S.</creator><creator>Fukuzumi, Shunichi</creator><creator>Bilic, Ante</creator><creator>Jones, Lathe A.</creator><creator>Bhosale, Sheshanath V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0979-8250</orcidid></search><sort><creationdate>201801</creationdate><title>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</title><author>Srivani, Doli ; Gupta, Akhil ; Bhosale, Sidhanath V. ; Ohkubo, Kei ; Bhosale, Rajesh S. ; Fukuzumi, Shunichi ; Bilic, Ante ; Jones, Lathe A. ; Bhosale, Sheshanath V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-507b82a5064549a93143e62f77a08497e8ef464c21fbd9ea0fe3144a9c4a169a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Atomic force microscopy</topic><topic>Buckminsterfullerene</topic><topic>bulk heterojunctions</topic><topic>Decay rate</topic><topic>Electron transfer</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Inspection</topic><topic>N-type semiconductors</topic><topic>naphthalenediimide</topic><topic>Nondestructive testing</topic><topic>Organic chemistry</topic><topic>photoinduced charge separation</topic><topic>Photovoltaic cells</topic><topic>Shift reaction</topic><topic>Solar cells</topic><topic>triphenylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivani, Doli</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Bhosale, Sidhanath V.</creatorcontrib><creatorcontrib>Ohkubo, Kei</creatorcontrib><creatorcontrib>Bhosale, Rajesh S.</creatorcontrib><creatorcontrib>Fukuzumi, Shunichi</creatorcontrib><creatorcontrib>Bilic, Ante</creatorcontrib><creatorcontrib>Jones, Lathe A.</creatorcontrib><creatorcontrib>Bhosale, Sheshanath V.</creatorcontrib><collection>CrossRef</collection><jtitle>Asian journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivani, Doli</au><au>Gupta, Akhil</au><au>Bhosale, Sidhanath V.</au><au>Ohkubo, Kei</au><au>Bhosale, Rajesh S.</au><au>Fukuzumi, Shunichi</au><au>Bilic, Ante</au><au>Jones, Lathe A.</au><au>Bhosale, Sheshanath V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells</atitle><jtitle>Asian journal of organic chemistry</jtitle><date>2018-01</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>220</spage><epage>226</epage><pages>220-226</pages><issn>2193-5807</issn><eissn>2193-5815</eissn><abstract>A new naphthalenediimide (NDI) derivative linked to triphenylamine (TPA) and fullerene (TPA–NDI–C60 triad; S3) was designed, synthesized and characterized. Femtosecond laser transient absorption spectral measurements revealed that fast electron transfer from TPA to the singlet‐excited state of NDI occurred to form a charge‐separated state (TPA.+–NDI.−–C60) with a rate constant of approximately 1012 s−1, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state (TPA.+–NDI–C60.−) that decayed by back electron transfer with a rate constant of 4.4×109 s−1 (with a corresponding lifetime of 230 ps). Organic bulk heterojunction solar cells were fabricated using the triad S3 as an n‐type semiconductor along with the conventional donor polymer poly(3‐hexylthiophene). The power conversion efficiency reached 3.03 % before annealing and 4.85 % after annealing in the optimized devices. To rationalize the performance of these organic photovoltaic devices, atomic force microscopy was used to study the morphology of poly(3‐hexylthiophene):S3 blend surfaces, which were found to be well interlaced and free from projections, lumps, or indentations.
Harness the power: A naphthalenediimide (NDI) derivative linked with triphenylamine and fullerene (TPA–NDI–C60 triad, S3) was synthesized. Femtosecond laser transient absorption spectroscopy revealed that fast electron transfer from triphenylamine to the singlet‐excited state of NDI occurred, followed by the charge‐shift reaction from NDI.− to C60 to produce the charge‐separated state. Organic bulk heterojunction solar cells that were fabricated using S3 as an n‐type semiconductor had a power conversion efficiency of 4.85 % after annealing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ajoc.201700557</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0979-8250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-5807 |
ispartof | Asian journal of organic chemistry, 2018-01, Vol.7 (1), p.220-226 |
issn | 2193-5807 2193-5815 |
language | eng |
recordid | cdi_proquest_journals_1987652595 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Annealing Atomic force microscopy Buckminsterfullerene bulk heterojunctions Decay rate Electron transfer Energy conversion efficiency Fullerenes Heterojunctions Inspection N-type semiconductors naphthalenediimide Nondestructive testing Organic chemistry photoinduced charge separation Photovoltaic cells Shift reaction Solar cells triphenylamine |
title | A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solution‐Processable Bulk Heterojunction Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triphenylamine%E2%80%93Naphthalenediimide%E2%80%93Fullerene%20Triad:%20Synthesis,%20Photoinduced%20Charge%20Separation%20and%20Solution%E2%80%90Processable%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Asian%20journal%20of%20organic%20chemistry&rft.au=Srivani,%20Doli&rft.date=2018-01&rft.volume=7&rft.issue=1&rft.spage=220&rft.epage=226&rft.pages=220-226&rft.issn=2193-5807&rft.eissn=2193-5815&rft_id=info:doi/10.1002/ajoc.201700557&rft_dat=%3Cproquest_cross%3E1987652595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987652595&rft_id=info:pmid/&rfr_iscdi=true |