BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX

We use Markov chain Monte Carlo methods to augment, via a novel multimove sampling scheme, a vector autoregressive (VAR) system with a latent business-cycle index that is negative during recessions and positive during expansions. We then sample counterfactual values of the macroeconomic variables in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macroeconomic dynamics 2006-11, Vol.10 (5), p.573-594
Hauptverfasser: DUEKER, MICHAEL, NELSON, CHARLES R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 5
container_start_page 573
container_title Macroeconomic dynamics
container_volume 10
creator DUEKER, MICHAEL
NELSON, CHARLES R.
description We use Markov chain Monte Carlo methods to augment, via a novel multimove sampling scheme, a vector autoregressive (VAR) system with a latent business-cycle index that is negative during recessions and positive during expansions. We then sample counterfactual values of the macroeconomic variables in the case where the latent business-cycle index is held constant. These counterfactual values represent posterior beliefs about how the economy would have evolved absent business-cycle fluctuations. One advantage is that a VAR framework provides model-consistent counterfactual values in the same way that VARs provide model-consistent forecasts, so data series are not filtered in isolation from each other. We apply these methods to estimate the business-cycle components of industrial production, consumer price inflation, the federal funds rate, and the spread between long-term and short-term interest rates. These decompositions provide an explicitly counterfactual approach to isolating the effects of the business cycle and to deriving empirical business-cycle facts.
doi_str_mv 10.1017/S1365100506050401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198758118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1165589191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-927e4def03c498d8367f19a534cb47b5b29bafdaf11287e97189376f6ac151093</originalsourceid><addsrcrecordid>eNplUMlOwzAQtRBIlMIHcLO4Bzyx4-VoXKdYShPUpAhOUTZLVEBL0h7696QqJziMZqS3aR5Ct0DugYB4yIHyCAiJCB-HEThDE2BcBZJE_Hy8Rzg44pfoahjWhACnoZqg58dV7lKb54F5M4nFsUsKu3TpHGcxXmizzKzJ0mzhDJ7pQuMXp7HGiS5sWuA_WpfO7Os1uvDVx9Dd_O4pWsW2ME9Bks2d0UnQMCZ3gQpFx9rOE9owJVtJufCgqoiypmaijupQ1ZVvKw8QStEpAVJRwT2vGhj_VHSK7k6-237zve-GXbne7PuvMbIEJUUkAeRIghOp6TfD0He-3Pbvn1V_KIGUx97Kf73RH_dRVxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198758118</pqid></control><display><type>article</type><title>BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX</title><source>Cambridge Journals Online</source><creator>DUEKER, MICHAEL ; NELSON, CHARLES R.</creator><creatorcontrib>DUEKER, MICHAEL ; NELSON, CHARLES R.</creatorcontrib><description>We use Markov chain Monte Carlo methods to augment, via a novel multimove sampling scheme, a vector autoregressive (VAR) system with a latent business-cycle index that is negative during recessions and positive during expansions. We then sample counterfactual values of the macroeconomic variables in the case where the latent business-cycle index is held constant. These counterfactual values represent posterior beliefs about how the economy would have evolved absent business-cycle fluctuations. One advantage is that a VAR framework provides model-consistent counterfactual values in the same way that VARs provide model-consistent forecasts, so data series are not filtered in isolation from each other. We apply these methods to estimate the business-cycle components of industrial production, consumer price inflation, the federal funds rate, and the spread between long-term and short-term interest rates. These decompositions provide an explicitly counterfactual approach to isolating the effects of the business cycle and to deriving empirical business-cycle facts.</description><identifier>ISSN: 1365-1005</identifier><identifier>EISSN: 1469-8056</identifier><identifier>DOI: 10.1017/S1365100506050401</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Business cycles ; Economic theory ; Interest rates ; Macroeconomics ; Markov analysis ; Monte Carlo simulation ; Regression analysis ; Studies</subject><ispartof>Macroeconomic dynamics, 2006-11, Vol.10 (5), p.573-594</ispartof><rights>Copyright Cambridge University Press, Publishing Division Nov 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-927e4def03c498d8367f19a534cb47b5b29bafdaf11287e97189376f6ac151093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>DUEKER, MICHAEL</creatorcontrib><creatorcontrib>NELSON, CHARLES R.</creatorcontrib><title>BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX</title><title>Macroeconomic dynamics</title><description>We use Markov chain Monte Carlo methods to augment, via a novel multimove sampling scheme, a vector autoregressive (VAR) system with a latent business-cycle index that is negative during recessions and positive during expansions. We then sample counterfactual values of the macroeconomic variables in the case where the latent business-cycle index is held constant. These counterfactual values represent posterior beliefs about how the economy would have evolved absent business-cycle fluctuations. One advantage is that a VAR framework provides model-consistent counterfactual values in the same way that VARs provide model-consistent forecasts, so data series are not filtered in isolation from each other. We apply these methods to estimate the business-cycle components of industrial production, consumer price inflation, the federal funds rate, and the spread between long-term and short-term interest rates. These decompositions provide an explicitly counterfactual approach to isolating the effects of the business cycle and to deriving empirical business-cycle facts.</description><subject>Business cycles</subject><subject>Economic theory</subject><subject>Interest rates</subject><subject>Macroeconomics</subject><subject>Markov analysis</subject><subject>Monte Carlo simulation</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>1365-1005</issn><issn>1469-8056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUMlOwzAQtRBIlMIHcLO4Bzyx4-VoXKdYShPUpAhOUTZLVEBL0h7696QqJziMZqS3aR5Ct0DugYB4yIHyCAiJCB-HEThDE2BcBZJE_Hy8Rzg44pfoahjWhACnoZqg58dV7lKb54F5M4nFsUsKu3TpHGcxXmizzKzJ0mzhDJ7pQuMXp7HGiS5sWuA_WpfO7Os1uvDVx9Dd_O4pWsW2ME9Bks2d0UnQMCZ3gQpFx9rOE9owJVtJufCgqoiypmaijupQ1ZVvKw8QStEpAVJRwT2vGhj_VHSK7k6-237zve-GXbne7PuvMbIEJUUkAeRIghOp6TfD0He-3Pbvn1V_KIGUx97Kf73RH_dRVxA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>DUEKER, MICHAEL</creator><creator>NELSON, CHARLES R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20061101</creationdate><title>BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX</title><author>DUEKER, MICHAEL ; NELSON, CHARLES R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-927e4def03c498d8367f19a534cb47b5b29bafdaf11287e97189376f6ac151093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Business cycles</topic><topic>Economic theory</topic><topic>Interest rates</topic><topic>Macroeconomics</topic><topic>Markov analysis</topic><topic>Monte Carlo simulation</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUEKER, MICHAEL</creatorcontrib><creatorcontrib>NELSON, CHARLES R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Macroeconomic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUEKER, MICHAEL</au><au>NELSON, CHARLES R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX</atitle><jtitle>Macroeconomic dynamics</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>10</volume><issue>5</issue><spage>573</spage><epage>594</epage><pages>573-594</pages><issn>1365-1005</issn><eissn>1469-8056</eissn><abstract>We use Markov chain Monte Carlo methods to augment, via a novel multimove sampling scheme, a vector autoregressive (VAR) system with a latent business-cycle index that is negative during recessions and positive during expansions. We then sample counterfactual values of the macroeconomic variables in the case where the latent business-cycle index is held constant. These counterfactual values represent posterior beliefs about how the economy would have evolved absent business-cycle fluctuations. One advantage is that a VAR framework provides model-consistent counterfactual values in the same way that VARs provide model-consistent forecasts, so data series are not filtered in isolation from each other. We apply these methods to estimate the business-cycle components of industrial production, consumer price inflation, the federal funds rate, and the spread between long-term and short-term interest rates. These decompositions provide an explicitly counterfactual approach to isolating the effects of the business cycle and to deriving empirical business-cycle facts.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1365100506050401</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-1005
ispartof Macroeconomic dynamics, 2006-11, Vol.10 (5), p.573-594
issn 1365-1005
1469-8056
language eng
recordid cdi_proquest_journals_198758118
source Cambridge Journals Online
subjects Business cycles
Economic theory
Interest rates
Macroeconomics
Markov analysis
Monte Carlo simulation
Regression analysis
Studies
title BUSINESS-CYCLE FILTERING OF MACROECONOMIC DATA VIA A LATENT BUSINESS-CYCLE INDEX
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BUSINESS-CYCLE%20FILTERING%20OF%20MACROECONOMIC%20DATA%20VIA%20A%20LATENT%20BUSINESS-CYCLE%20INDEX&rft.jtitle=Macroeconomic%20dynamics&rft.au=DUEKER,%20MICHAEL&rft.date=2006-11-01&rft.volume=10&rft.issue=5&rft.spage=573&rft.epage=594&rft.pages=573-594&rft.issn=1365-1005&rft.eissn=1469-8056&rft_id=info:doi/10.1017/S1365100506050401&rft_dat=%3Cproquest_cross%3E1165589191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198758118&rft_id=info:pmid/&rfr_iscdi=true