Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends

This article has two objectives. The first is to investigate in greater detail the finding of Rogosa and Willett that the quasi-Markov simplex model fits a linear growth curve covariance structure. It is found that under various circumstances the quasi-Markov simplex model is rejected. Furthermore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of educational and behavioral statistics 1994-09, Vol.19 (3), p.201-215
Hauptverfasser: Mandys, Frantisek, Dolan, Conor V., Molenaar, Peter C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 3
container_start_page 201
container_title Journal of educational and behavioral statistics
container_volume 19
creator Mandys, Frantisek
Dolan, Conor V.
Molenaar, Peter C. M.
description This article has two objectives. The first is to investigate in greater detail the finding of Rogosa and Willett that the quasi-Markov simplex model fits a linear growth curve covariance structure. It is found that under various circumstances the quasi-Markov simplex model is rejected. Furthermore, the procedure is reversed by fitting the linear growth curve to quasi-Markov simplex covariance structure. It is found that the linear growth curve, like the quasi-Markov simplex, is not always rejected even though the model is formally incorrect. The second objective of this article is to present a quasi-Markov simplex model with structured means. This model, like the linear growth curve model with structured means, is based on the assumption that the variation in means and individual differences are attributable to the same causal agents. We argue that this assumption should be tested explicitly. An example is given.
doi_str_mv 10.3102/10769986019003201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987395367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3102_10769986019003201</sage_id><sourcerecordid>1987395367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1571-55c51993f190ec95b81f06d986e09925a3111196da9978410a6697749afbedb93</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSsEEmPwA7hF4twRN01bc5smNpA2cWCcq6x1WaeuKUnK2L8n2zggIXyxpfe-J9tBcAt8JIBH98DTBDFLOCDnIuJwFgwAhQyBy_jcz14PD4bL4MraDecgolgMArvcaTa2HRXOMl0xtyb2Wm-7hr7YQpfUPLCZ1mVL9ihPa8ecZvO6JWXYzOidW7NJbz495UxfuN6QZaotj0HjVjV7Wx_JBamWLQ21pb0OLirVWLr56cPgbfq4nDyF85fZ82Q8DwuQKYRSFhIQReVPogLlKoOKJ6W_gThiJJUAX5iUCjHNYuAqSTBNY1TVisoVimFwd8rtjP7oybp8o3vjd7I5YJYKlCJJvQtOrsJoaw1VeWfqrTL7HHh--G3-57eeGZ0Yq97pV-q_wDfcIXcp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987395367</pqid></control><display><type>article</type><title>Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends</title><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Mandys, Frantisek ; Dolan, Conor V. ; Molenaar, Peter C. M.</creator><creatorcontrib>Mandys, Frantisek ; Dolan, Conor V. ; Molenaar, Peter C. M.</creatorcontrib><description>This article has two objectives. The first is to investigate in greater detail the finding of Rogosa and Willett that the quasi-Markov simplex model fits a linear growth curve covariance structure. It is found that under various circumstances the quasi-Markov simplex model is rejected. Furthermore, the procedure is reversed by fitting the linear growth curve to quasi-Markov simplex covariance structure. It is found that the linear growth curve, like the quasi-Markov simplex, is not always rejected even though the model is formally incorrect. The second objective of this article is to present a quasi-Markov simplex model with structured means. This model, like the linear growth curve model with structured means, is based on the assumption that the variation in means and individual differences are attributable to the same causal agents. We argue that this assumption should be tested explicitly. An example is given.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.3102/10769986019003201</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Growth disorders ; Physical growth</subject><ispartof>Journal of educational and behavioral statistics, 1994-09, Vol.19 (3), p.201-215</ispartof><rights>Copyright American Educational Research Association Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1571-55c51993f190ec95b81f06d986e09925a3111196da9978410a6697749afbedb93</citedby><cites>FETCH-LOGICAL-c1571-55c51993f190ec95b81f06d986e09925a3111196da9978410a6697749afbedb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3102/10769986019003201$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3102/10769986019003201$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Mandys, Frantisek</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Molenaar, Peter C. M.</creatorcontrib><title>Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends</title><title>Journal of educational and behavioral statistics</title><description>This article has two objectives. The first is to investigate in greater detail the finding of Rogosa and Willett that the quasi-Markov simplex model fits a linear growth curve covariance structure. It is found that under various circumstances the quasi-Markov simplex model is rejected. Furthermore, the procedure is reversed by fitting the linear growth curve to quasi-Markov simplex covariance structure. It is found that the linear growth curve, like the quasi-Markov simplex, is not always rejected even though the model is formally incorrect. The second objective of this article is to present a quasi-Markov simplex model with structured means. This model, like the linear growth curve model with structured means, is based on the assumption that the variation in means and individual differences are attributable to the same causal agents. We argue that this assumption should be tested explicitly. An example is given.</description><subject>Growth disorders</subject><subject>Physical growth</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSsEEmPwA7hF4twRN01bc5smNpA2cWCcq6x1WaeuKUnK2L8n2zggIXyxpfe-J9tBcAt8JIBH98DTBDFLOCDnIuJwFgwAhQyBy_jcz14PD4bL4MraDecgolgMArvcaTa2HRXOMl0xtyb2Wm-7hr7YQpfUPLCZ1mVL9ihPa8ecZvO6JWXYzOidW7NJbz495UxfuN6QZaotj0HjVjV7Wx_JBamWLQ21pb0OLirVWLr56cPgbfq4nDyF85fZ82Q8DwuQKYRSFhIQReVPogLlKoOKJ6W_gThiJJUAX5iUCjHNYuAqSTBNY1TVisoVimFwd8rtjP7oybp8o3vjd7I5YJYKlCJJvQtOrsJoaw1VeWfqrTL7HHh--G3-57eeGZ0Yq97pV-q_wDfcIXcp</recordid><startdate>199409</startdate><enddate>199409</enddate><creator>Mandys, Frantisek</creator><creator>Dolan, Conor V.</creator><creator>Molenaar, Peter C. M.</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199409</creationdate><title>Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends</title><author>Mandys, Frantisek ; Dolan, Conor V. ; Molenaar, Peter C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1571-55c51993f190ec95b81f06d986e09925a3111196da9978410a6697749afbedb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Growth disorders</topic><topic>Physical growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandys, Frantisek</creatorcontrib><creatorcontrib>Dolan, Conor V.</creatorcontrib><creatorcontrib>Molenaar, Peter C. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of educational and behavioral statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandys, Frantisek</au><au>Dolan, Conor V.</au><au>Molenaar, Peter C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends</atitle><jtitle>Journal of educational and behavioral statistics</jtitle><date>1994-09</date><risdate>1994</risdate><volume>19</volume><issue>3</issue><spage>201</spage><epage>215</epage><pages>201-215</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>This article has two objectives. The first is to investigate in greater detail the finding of Rogosa and Willett that the quasi-Markov simplex model fits a linear growth curve covariance structure. It is found that under various circumstances the quasi-Markov simplex model is rejected. Furthermore, the procedure is reversed by fitting the linear growth curve to quasi-Markov simplex covariance structure. It is found that the linear growth curve, like the quasi-Markov simplex, is not always rejected even though the model is formally incorrect. The second objective of this article is to present a quasi-Markov simplex model with structured means. This model, like the linear growth curve model with structured means, is based on the assumption that the variation in means and individual differences are attributable to the same causal agents. We argue that this assumption should be tested explicitly. An example is given.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/10769986019003201</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-9986
ispartof Journal of educational and behavioral statistics, 1994-09, Vol.19 (3), p.201-215
issn 1076-9986
1935-1054
language eng
recordid cdi_proquest_journals_1987395367
source SAGE Complete A-Z List; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Growth disorders
Physical growth
title Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Aspects%20of%20the%20Simplex%20Model:%20Goodness%20of%20Fit%20to%20Linear%20Growth%20Curve%20Structures%20and%20the%20Analysis%20of%20Mean%20Trends&rft.jtitle=Journal%20of%20educational%20and%20behavioral%20statistics&rft.au=Mandys,%20Frantisek&rft.date=1994-09&rft.volume=19&rft.issue=3&rft.spage=201&rft.epage=215&rft.pages=201-215&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.3102/10769986019003201&rft_dat=%3Cproquest_cross%3E1987395367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987395367&rft_id=info:pmid/&rft_sage_id=10.3102_10769986019003201&rfr_iscdi=true