Performance of nano-carbon loaded polymer composites: Dimensionality matters

A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-01, Vol.126, p.410-418
Hauptverfasser: Nadiv, Roey, Shachar, Gal, Peretz-Damari, Sivan, Varenik, Maxim, Levy, Idan, Buzaglo, Matat, Ruse, Efrat, Regev, Oren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue
container_start_page 410
container_title Carbon (New York)
container_volume 126
creator Nadiv, Roey
Shachar, Gal
Peretz-Damari, Sivan
Varenik, Maxim
Levy, Idan
Buzaglo, Matat
Ruse, Efrat
Regev, Oren
description A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.10.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987388993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317310400</els_id><sourcerecordid>1987388993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcB1615tJ3EhSDjEwZ0oeuQpjeQ0jY1yQjz781Q164u93LO4Z4PoWtKSkpoc9uXRofWTyUjdJNPJeHyBK2o2PCCC0lP0YoQIoqGMX6OLmLs81oJWq3Q7gOC9WHUkwHsLZ705IslDQ9ed9Dh2Q-HEQI2fpx9dAniHX50I0zR-UkPLh3wqFOCEC_RmdVDhKu_uUZfz0-f29di9_7ytn3YFaYiJBXCmJqyuuokkVxoWUne1WCFgVbaZsMM6WyriZamZryxUjAQgmkD0AITQPga3Sy5c_Dfe4hJ9X4f8i9RUZlLCyElz6pqUZngYwxg1RzcqMNBUaKO3FSvlqbqyO14zdyy7X6xQW7w4yCoaBxkPJ0LYJLqvPs_4Bf-lnl1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987388993</pqid></control><display><type>article</type><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><source>Elsevier ScienceDirect Journals</source><creator>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</creator><creatorcontrib>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</creatorcontrib><description>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.10.039</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Comparative studies ; Composite materials ; Dimension ; Electrical resistivity ; Figure of merit ; Fillers ; Graphene ; Graphite ; Heat conductivity ; Mechanical properties ; Nanocomposite ; Nanotube ; Percolation ; Polymer matrix composites ; Rheological properties ; Robustness ; Viscosity</subject><ispartof>Carbon (New York), 2018-01, Vol.126, p.410-418</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</citedby><cites>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</cites><orcidid>0000-0003-2663-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Nadiv, Roey</creatorcontrib><creatorcontrib>Shachar, Gal</creatorcontrib><creatorcontrib>Peretz-Damari, Sivan</creatorcontrib><creatorcontrib>Varenik, Maxim</creatorcontrib><creatorcontrib>Levy, Idan</creatorcontrib><creatorcontrib>Buzaglo, Matat</creatorcontrib><creatorcontrib>Ruse, Efrat</creatorcontrib><creatorcontrib>Regev, Oren</creatorcontrib><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><title>Carbon (New York)</title><description>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness. [Display omitted]</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Comparative studies</subject><subject>Composite materials</subject><subject>Dimension</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Mechanical properties</subject><subject>Nanocomposite</subject><subject>Nanotube</subject><subject>Percolation</subject><subject>Polymer matrix composites</subject><subject>Rheological properties</subject><subject>Robustness</subject><subject>Viscosity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcB1615tJ3EhSDjEwZ0oeuQpjeQ0jY1yQjz781Q164u93LO4Z4PoWtKSkpoc9uXRofWTyUjdJNPJeHyBK2o2PCCC0lP0YoQIoqGMX6OLmLs81oJWq3Q7gOC9WHUkwHsLZ705IslDQ9ed9Dh2Q-HEQI2fpx9dAniHX50I0zR-UkPLh3wqFOCEC_RmdVDhKu_uUZfz0-f29di9_7ytn3YFaYiJBXCmJqyuuokkVxoWUne1WCFgVbaZsMM6WyriZamZryxUjAQgmkD0AITQPga3Sy5c_Dfe4hJ9X4f8i9RUZlLCyElz6pqUZngYwxg1RzcqMNBUaKO3FSvlqbqyO14zdyy7X6xQW7w4yCoaBxkPJ0LYJLqvPs_4Bf-lnl1</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nadiv, Roey</creator><creator>Shachar, Gal</creator><creator>Peretz-Damari, Sivan</creator><creator>Varenik, Maxim</creator><creator>Levy, Idan</creator><creator>Buzaglo, Matat</creator><creator>Ruse, Efrat</creator><creator>Regev, Oren</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2663-7846</orcidid></search><sort><creationdate>201801</creationdate><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><author>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Comparative studies</topic><topic>Composite materials</topic><topic>Dimension</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Mechanical properties</topic><topic>Nanocomposite</topic><topic>Nanotube</topic><topic>Percolation</topic><topic>Polymer matrix composites</topic><topic>Rheological properties</topic><topic>Robustness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadiv, Roey</creatorcontrib><creatorcontrib>Shachar, Gal</creatorcontrib><creatorcontrib>Peretz-Damari, Sivan</creatorcontrib><creatorcontrib>Varenik, Maxim</creatorcontrib><creatorcontrib>Levy, Idan</creatorcontrib><creatorcontrib>Buzaglo, Matat</creatorcontrib><creatorcontrib>Ruse, Efrat</creatorcontrib><creatorcontrib>Regev, Oren</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadiv, Roey</au><au>Shachar, Gal</au><au>Peretz-Damari, Sivan</au><au>Varenik, Maxim</au><au>Levy, Idan</au><au>Buzaglo, Matat</au><au>Ruse, Efrat</au><au>Regev, Oren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of nano-carbon loaded polymer composites: Dimensionality matters</atitle><jtitle>Carbon (New York)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>126</volume><spage>410</spage><epage>418</epage><pages>410-418</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.10.039</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2663-7846</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2018-01, Vol.126, p.410-418
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1987388993
source Elsevier ScienceDirect Journals
subjects Carbon
Carbon nanotubes
Comparative studies
Composite materials
Dimension
Electrical resistivity
Figure of merit
Fillers
Graphene
Graphite
Heat conductivity
Mechanical properties
Nanocomposite
Nanotube
Percolation
Polymer matrix composites
Rheological properties
Robustness
Viscosity
title Performance of nano-carbon loaded polymer composites: Dimensionality matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20nano-carbon%20loaded%20polymer%20composites:%20Dimensionality%20matters&rft.jtitle=Carbon%20(New%20York)&rft.au=Nadiv,%20Roey&rft.date=2018-01&rft.volume=126&rft.spage=410&rft.epage=418&rft.pages=410-418&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.10.039&rft_dat=%3Cproquest_cross%3E1987388993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987388993&rft_id=info:pmid/&rft_els_id=S0008622317310400&rfr_iscdi=true