Performance of nano-carbon loaded polymer composites: Dimensionality matters
A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of sel...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2018-01, Vol.126, p.410-418 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | |
container_start_page | 410 |
container_title | Carbon (New York) |
container_volume | 126 |
creator | Nadiv, Roey Shachar, Gal Peretz-Damari, Sivan Varenik, Maxim Levy, Idan Buzaglo, Matat Ruse, Efrat Regev, Oren |
description | A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.10.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987388993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317310400</els_id><sourcerecordid>1987388993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcB1615tJ3EhSDjEwZ0oeuQpjeQ0jY1yQjz781Q164u93LO4Z4PoWtKSkpoc9uXRofWTyUjdJNPJeHyBK2o2PCCC0lP0YoQIoqGMX6OLmLs81oJWq3Q7gOC9WHUkwHsLZ705IslDQ9ed9Dh2Q-HEQI2fpx9dAniHX50I0zR-UkPLh3wqFOCEC_RmdVDhKu_uUZfz0-f29di9_7ytn3YFaYiJBXCmJqyuuokkVxoWUne1WCFgVbaZsMM6WyriZamZryxUjAQgmkD0AITQPga3Sy5c_Dfe4hJ9X4f8i9RUZlLCyElz6pqUZngYwxg1RzcqMNBUaKO3FSvlqbqyO14zdyy7X6xQW7w4yCoaBxkPJ0LYJLqvPs_4Bf-lnl1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987388993</pqid></control><display><type>article</type><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><source>Elsevier ScienceDirect Journals</source><creator>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</creator><creatorcontrib>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</creatorcontrib><description>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.10.039</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Comparative studies ; Composite materials ; Dimension ; Electrical resistivity ; Figure of merit ; Fillers ; Graphene ; Graphite ; Heat conductivity ; Mechanical properties ; Nanocomposite ; Nanotube ; Percolation ; Polymer matrix composites ; Rheological properties ; Robustness ; Viscosity</subject><ispartof>Carbon (New York), 2018-01, Vol.126, p.410-418</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</citedby><cites>FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</cites><orcidid>0000-0003-2663-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Nadiv, Roey</creatorcontrib><creatorcontrib>Shachar, Gal</creatorcontrib><creatorcontrib>Peretz-Damari, Sivan</creatorcontrib><creatorcontrib>Varenik, Maxim</creatorcontrib><creatorcontrib>Levy, Idan</creatorcontrib><creatorcontrib>Buzaglo, Matat</creatorcontrib><creatorcontrib>Ruse, Efrat</creatorcontrib><creatorcontrib>Regev, Oren</creatorcontrib><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><title>Carbon (New York)</title><description>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness.
[Display omitted]</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Comparative studies</subject><subject>Composite materials</subject><subject>Dimension</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Mechanical properties</subject><subject>Nanocomposite</subject><subject>Nanotube</subject><subject>Percolation</subject><subject>Polymer matrix composites</subject><subject>Rheological properties</subject><subject>Robustness</subject><subject>Viscosity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcB1615tJ3EhSDjEwZ0oeuQpjeQ0jY1yQjz781Q164u93LO4Z4PoWtKSkpoc9uXRofWTyUjdJNPJeHyBK2o2PCCC0lP0YoQIoqGMX6OLmLs81oJWq3Q7gOC9WHUkwHsLZ705IslDQ9ed9Dh2Q-HEQI2fpx9dAniHX50I0zR-UkPLh3wqFOCEC_RmdVDhKu_uUZfz0-f29di9_7ytn3YFaYiJBXCmJqyuuokkVxoWUne1WCFgVbaZsMM6WyriZamZryxUjAQgmkD0AITQPga3Sy5c_Dfe4hJ9X4f8i9RUZlLCyElz6pqUZngYwxg1RzcqMNBUaKO3FSvlqbqyO14zdyy7X6xQW7w4yCoaBxkPJ0LYJLqvPs_4Bf-lnl1</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nadiv, Roey</creator><creator>Shachar, Gal</creator><creator>Peretz-Damari, Sivan</creator><creator>Varenik, Maxim</creator><creator>Levy, Idan</creator><creator>Buzaglo, Matat</creator><creator>Ruse, Efrat</creator><creator>Regev, Oren</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2663-7846</orcidid></search><sort><creationdate>201801</creationdate><title>Performance of nano-carbon loaded polymer composites: Dimensionality matters</title><author>Nadiv, Roey ; Shachar, Gal ; Peretz-Damari, Sivan ; Varenik, Maxim ; Levy, Idan ; Buzaglo, Matat ; Ruse, Efrat ; Regev, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-8cc51254d90938a9493d5ef8ceb9f672c0dfba0a9c5236f982e882aceebe28e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Comparative studies</topic><topic>Composite materials</topic><topic>Dimension</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Mechanical properties</topic><topic>Nanocomposite</topic><topic>Nanotube</topic><topic>Percolation</topic><topic>Polymer matrix composites</topic><topic>Rheological properties</topic><topic>Robustness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadiv, Roey</creatorcontrib><creatorcontrib>Shachar, Gal</creatorcontrib><creatorcontrib>Peretz-Damari, Sivan</creatorcontrib><creatorcontrib>Varenik, Maxim</creatorcontrib><creatorcontrib>Levy, Idan</creatorcontrib><creatorcontrib>Buzaglo, Matat</creatorcontrib><creatorcontrib>Ruse, Efrat</creatorcontrib><creatorcontrib>Regev, Oren</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadiv, Roey</au><au>Shachar, Gal</au><au>Peretz-Damari, Sivan</au><au>Varenik, Maxim</au><au>Levy, Idan</au><au>Buzaglo, Matat</au><au>Ruse, Efrat</au><au>Regev, Oren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of nano-carbon loaded polymer composites: Dimensionality matters</atitle><jtitle>Carbon (New York)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>126</volume><spage>410</spage><epage>418</epage><pages>410-418</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>A comparative study was conducted on composite materials having various nanocarbon fillers of different dimensionalities, namely, 1D carbon nanotubes (CNTs), 2D graphite nanoplates (GNPs), and 3D graphite. Comprehensive mechanical, electrical and rheological studies illustrated the complexity of selecting the optimal nanocarbon filler. We found that the mechanical performance of the composite is optimal near the percolation threshold concentration of the filler for all the nanocarbons. The 1D CNTs strongly affected the electrical conductivity and reinforcement of the composite, yielding a narrow range of optimal performance at the lowest filler concentration (0.15 wt%), albeit at the cost of high viscosity. The 2D GNPs demonstrated a wider range of reinforcement with a milder influence on the viscosity at a moderate GNP concentration (3.5 wt%). The 3D graphite filler exhibited similar behavior to that of GNPs, although at a much higher concentration (25 wt%). We introduced a robustness factor as a measure of the filler concentration range at which a valuable reinforcing effect is achieved; this factor increases with the filler dimensionality. These contradicting dimensionality effects are condensed into a figure of merit that takes into account the rheological effect, the mechanical enhancement, and the filler concentration and robustness.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.10.039</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2663-7846</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2018-01, Vol.126, p.410-418 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1987388993 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon Carbon nanotubes Comparative studies Composite materials Dimension Electrical resistivity Figure of merit Fillers Graphene Graphite Heat conductivity Mechanical properties Nanocomposite Nanotube Percolation Polymer matrix composites Rheological properties Robustness Viscosity |
title | Performance of nano-carbon loaded polymer composites: Dimensionality matters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20nano-carbon%20loaded%20polymer%20composites:%20Dimensionality%20matters&rft.jtitle=Carbon%20(New%20York)&rft.au=Nadiv,%20Roey&rft.date=2018-01&rft.volume=126&rft.spage=410&rft.epage=418&rft.pages=410-418&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.10.039&rft_dat=%3Cproquest_cross%3E1987388993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987388993&rft_id=info:pmid/&rft_els_id=S0008622317310400&rfr_iscdi=true |