Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment

We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2017-12, Vol.122 (12), p.2371-2400
Hauptverfasser: Hayne, Paul O., Bandfield, Joshua L., Siegler, Matthew A., Vasavada, Ashwin R., Ghent, Rebecca R., Williams, Jean‐Pierre, Greenhagen, Benjamin T., Aharonson, Oded, Elder, Catherine M., Lucey, Paul G., Paige, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2400
container_issue 12
container_start_page 2371
container_title Journal of geophysical research. Planets
container_volume 122
creator Hayne, Paul O.
Bandfield, Joshua L.
Siegler, Matthew A.
Vasavada, Ashwin R.
Ghent, Rebecca R.
Williams, Jean‐Pierre
Greenhagen, Benjamin T.
Aharonson, Oded
Elder, Catherine M.
Lucey, Paul G.
Paige, David A.
description We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales
doi_str_mv 10.1002/2017JE005387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987030202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987030202</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYjR8QiSsFJ2nr5IhGN5iGQNM4V22X0kxtU9IO2L8nMJA44Yvt148_ZELOGVwxAH7NgeEiAYiExCMy4ixWgfKV498YFJ6SSd9vwZv0EhMjks9rm2c1XekXW5uhoutKu8Z21b43hdefnO20G4zuqS3pUGn6YG1LZ84239mteTOtdnS5azNHV9nG2EYPXkg-fJ9pdDuckZMyq3s9-fFj8jxL1tO7YPk4v5_eLIMsRMQg1shCyWQeY5nLkmG-gTCCCGUcKamUCDecFUwKJUtUCBlKFXMJhUBPZbEYk4vD3M7Z153uh3Rrd671K1OmJIIADtxTlweqcLbvnS7Tzp-ZuX3KIP16ZPr3kR4XB_zd1Hr_L5su5quEA0YoPgFc_nIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987030202</pqid></control><display><type>article</type><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</creator><creatorcontrib>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</creatorcontrib><description>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales &lt;1 Gyr. Regional‐ and local‐scale variations show prominent impact features &lt;1 Gyr old, including higher thermal inertia (&gt; 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (&lt; 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater. Plain Language Summary We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith. Key Points We present global maps of regolith thermophysical properties The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on &gt;1 Gyr timescales</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/2017JE005387</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Chronology ; Dating techniques ; Diurnal variations ; Diviner ; Ejecta ; Ejection ; Equatorial regions ; Gardening ; Heat transfer ; impacts ; Inertia ; Infrared radiometers ; lunar ; Lunar regolith ; Lunar spacecraft ; Lunar surface ; Meteorite craters ; Meteorites ; Moon ; Physical properties ; Planetary surfaces ; Reconnaissance ; Regolith ; Scale height ; Specific heat ; Surface boundary layer ; Temperature cycles ; Temperature dependence ; thermal ; Thermal conductivity ; Thermal inertia ; Thermophysical properties</subject><ispartof>Journal of geophysical research. Planets, 2017-12, Vol.122 (12), p.2371-2400</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</citedby><cites>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</cites><orcidid>0000-0003-4163-2760 ; 0000-0001-9930-2495 ; 0000-0002-9993-8861 ; 0000-0003-2665-286X ; 0000-0003-4399-0449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JE005387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JE005387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Hayne, Paul O.</creatorcontrib><creatorcontrib>Bandfield, Joshua L.</creatorcontrib><creatorcontrib>Siegler, Matthew A.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><creatorcontrib>Ghent, Rebecca R.</creatorcontrib><creatorcontrib>Williams, Jean‐Pierre</creatorcontrib><creatorcontrib>Greenhagen, Benjamin T.</creatorcontrib><creatorcontrib>Aharonson, Oded</creatorcontrib><creatorcontrib>Elder, Catherine M.</creatorcontrib><creatorcontrib>Lucey, Paul G.</creatorcontrib><creatorcontrib>Paige, David A.</creatorcontrib><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><title>Journal of geophysical research. Planets</title><description>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales &lt;1 Gyr. Regional‐ and local‐scale variations show prominent impact features &lt;1 Gyr old, including higher thermal inertia (&gt; 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (&lt; 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater. Plain Language Summary We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith. Key Points We present global maps of regolith thermophysical properties The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on &gt;1 Gyr timescales</description><subject>Chronology</subject><subject>Dating techniques</subject><subject>Diurnal variations</subject><subject>Diviner</subject><subject>Ejecta</subject><subject>Ejection</subject><subject>Equatorial regions</subject><subject>Gardening</subject><subject>Heat transfer</subject><subject>impacts</subject><subject>Inertia</subject><subject>Infrared radiometers</subject><subject>lunar</subject><subject>Lunar regolith</subject><subject>Lunar spacecraft</subject><subject>Lunar surface</subject><subject>Meteorite craters</subject><subject>Meteorites</subject><subject>Moon</subject><subject>Physical properties</subject><subject>Planetary surfaces</subject><subject>Reconnaissance</subject><subject>Regolith</subject><subject>Scale height</subject><subject>Specific heat</subject><subject>Surface boundary layer</subject><subject>Temperature cycles</subject><subject>Temperature dependence</subject><subject>thermal</subject><subject>Thermal conductivity</subject><subject>Thermal inertia</subject><subject>Thermophysical properties</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYjR8QiSsFJ2nr5IhGN5iGQNM4V22X0kxtU9IO2L8nMJA44Yvt148_ZELOGVwxAH7NgeEiAYiExCMy4ixWgfKV498YFJ6SSd9vwZv0EhMjks9rm2c1XekXW5uhoutKu8Z21b43hdefnO20G4zuqS3pUGn6YG1LZ84239mteTOtdnS5azNHV9nG2EYPXkg-fJ9pdDuckZMyq3s9-fFj8jxL1tO7YPk4v5_eLIMsRMQg1shCyWQeY5nLkmG-gTCCCGUcKamUCDecFUwKJUtUCBlKFXMJhUBPZbEYk4vD3M7Z153uh3Rrd671K1OmJIIADtxTlweqcLbvnS7Tzp-ZuX3KIP16ZPr3kR4XB_zd1Hr_L5su5quEA0YoPgFc_nIG</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Hayne, Paul O.</creator><creator>Bandfield, Joshua L.</creator><creator>Siegler, Matthew A.</creator><creator>Vasavada, Ashwin R.</creator><creator>Ghent, Rebecca R.</creator><creator>Williams, Jean‐Pierre</creator><creator>Greenhagen, Benjamin T.</creator><creator>Aharonson, Oded</creator><creator>Elder, Catherine M.</creator><creator>Lucey, Paul G.</creator><creator>Paige, David A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4163-2760</orcidid><orcidid>https://orcid.org/0000-0001-9930-2495</orcidid><orcidid>https://orcid.org/0000-0002-9993-8861</orcidid><orcidid>https://orcid.org/0000-0003-2665-286X</orcidid><orcidid>https://orcid.org/0000-0003-4399-0449</orcidid></search><sort><creationdate>201712</creationdate><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><author>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chronology</topic><topic>Dating techniques</topic><topic>Diurnal variations</topic><topic>Diviner</topic><topic>Ejecta</topic><topic>Ejection</topic><topic>Equatorial regions</topic><topic>Gardening</topic><topic>Heat transfer</topic><topic>impacts</topic><topic>Inertia</topic><topic>Infrared radiometers</topic><topic>lunar</topic><topic>Lunar regolith</topic><topic>Lunar spacecraft</topic><topic>Lunar surface</topic><topic>Meteorite craters</topic><topic>Meteorites</topic><topic>Moon</topic><topic>Physical properties</topic><topic>Planetary surfaces</topic><topic>Reconnaissance</topic><topic>Regolith</topic><topic>Scale height</topic><topic>Specific heat</topic><topic>Surface boundary layer</topic><topic>Temperature cycles</topic><topic>Temperature dependence</topic><topic>thermal</topic><topic>Thermal conductivity</topic><topic>Thermal inertia</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayne, Paul O.</creatorcontrib><creatorcontrib>Bandfield, Joshua L.</creatorcontrib><creatorcontrib>Siegler, Matthew A.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><creatorcontrib>Ghent, Rebecca R.</creatorcontrib><creatorcontrib>Williams, Jean‐Pierre</creatorcontrib><creatorcontrib>Greenhagen, Benjamin T.</creatorcontrib><creatorcontrib>Aharonson, Oded</creatorcontrib><creatorcontrib>Elder, Catherine M.</creatorcontrib><creatorcontrib>Lucey, Paul G.</creatorcontrib><creatorcontrib>Paige, David A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayne, Paul O.</au><au>Bandfield, Joshua L.</au><au>Siegler, Matthew A.</au><au>Vasavada, Ashwin R.</au><au>Ghent, Rebecca R.</au><au>Williams, Jean‐Pierre</au><au>Greenhagen, Benjamin T.</au><au>Aharonson, Oded</au><au>Elder, Catherine M.</au><au>Lucey, Paul G.</au><au>Paige, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2017-12</date><risdate>2017</risdate><volume>122</volume><issue>12</issue><spage>2371</spage><epage>2400</epage><pages>2371-2400</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales &lt;1 Gyr. Regional‐ and local‐scale variations show prominent impact features &lt;1 Gyr old, including higher thermal inertia (&gt; 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (&lt; 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater. Plain Language Summary We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith. Key Points We present global maps of regolith thermophysical properties The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on &gt;1 Gyr timescales</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JE005387</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4163-2760</orcidid><orcidid>https://orcid.org/0000-0001-9930-2495</orcidid><orcidid>https://orcid.org/0000-0002-9993-8861</orcidid><orcidid>https://orcid.org/0000-0003-2665-286X</orcidid><orcidid>https://orcid.org/0000-0003-4399-0449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2017-12, Vol.122 (12), p.2371-2400
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_journals_1987030202
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Chronology
Dating techniques
Diurnal variations
Diviner
Ejecta
Ejection
Equatorial regions
Gardening
Heat transfer
impacts
Inertia
Infrared radiometers
lunar
Lunar regolith
Lunar spacecraft
Lunar surface
Meteorite craters
Meteorites
Moon
Physical properties
Planetary surfaces
Reconnaissance
Regolith
Scale height
Specific heat
Surface boundary layer
Temperature cycles
Temperature dependence
thermal
Thermal conductivity
Thermal inertia
Thermophysical properties
title Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Regolith%20Thermophysical%20Properties%20of%20the%20Moon%20From%20the%20Diviner%20Lunar%20Radiometer%20Experiment&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Hayne,%20Paul%20O.&rft.date=2017-12&rft.volume=122&rft.issue=12&rft.spage=2371&rft.epage=2400&rft.pages=2371-2400&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/2017JE005387&rft_dat=%3Cproquest_cross%3E1987030202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987030202&rft_id=info:pmid/&rfr_iscdi=true