Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment
We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, giv...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Planets 2017-12, Vol.122 (12), p.2371-2400 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2400 |
---|---|
container_issue | 12 |
container_start_page | 2371 |
container_title | Journal of geophysical research. Planets |
container_volume | 122 |
creator | Hayne, Paul O. Bandfield, Joshua L. Siegler, Matthew A. Vasavada, Ashwin R. Ghent, Rebecca R. Williams, Jean‐Pierre Greenhagen, Benjamin T. Aharonson, Oded Elder, Catherine M. Lucey, Paul G. Paige, David A. |
description | We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales |
doi_str_mv | 10.1002/2017JE005387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1987030202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987030202</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYjR8QiSsFJ2nr5IhGN5iGQNM4V22X0kxtU9IO2L8nMJA44Yvt148_ZELOGVwxAH7NgeEiAYiExCMy4ixWgfKV498YFJ6SSd9vwZv0EhMjks9rm2c1XekXW5uhoutKu8Z21b43hdefnO20G4zuqS3pUGn6YG1LZ84239mteTOtdnS5azNHV9nG2EYPXkg-fJ9pdDuckZMyq3s9-fFj8jxL1tO7YPk4v5_eLIMsRMQg1shCyWQeY5nLkmG-gTCCCGUcKamUCDecFUwKJUtUCBlKFXMJhUBPZbEYk4vD3M7Z153uh3Rrd671K1OmJIIADtxTlweqcLbvnS7Tzp-ZuX3KIP16ZPr3kR4XB_zd1Hr_L5su5quEA0YoPgFc_nIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987030202</pqid></control><display><type>article</type><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</creator><creatorcontrib>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</creatorcontrib><description>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales <1 Gyr. Regional‐ and local‐scale variations show prominent impact features <1 Gyr old, including higher thermal inertia (> 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (< 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater.
Plain Language Summary
We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith.
Key Points
We present global maps of regolith thermophysical properties
The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K
The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on >1 Gyr timescales</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/2017JE005387</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Chronology ; Dating techniques ; Diurnal variations ; Diviner ; Ejecta ; Ejection ; Equatorial regions ; Gardening ; Heat transfer ; impacts ; Inertia ; Infrared radiometers ; lunar ; Lunar regolith ; Lunar spacecraft ; Lunar surface ; Meteorite craters ; Meteorites ; Moon ; Physical properties ; Planetary surfaces ; Reconnaissance ; Regolith ; Scale height ; Specific heat ; Surface boundary layer ; Temperature cycles ; Temperature dependence ; thermal ; Thermal conductivity ; Thermal inertia ; Thermophysical properties</subject><ispartof>Journal of geophysical research. Planets, 2017-12, Vol.122 (12), p.2371-2400</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</citedby><cites>FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</cites><orcidid>0000-0003-4163-2760 ; 0000-0001-9930-2495 ; 0000-0002-9993-8861 ; 0000-0003-2665-286X ; 0000-0003-4399-0449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JE005387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JE005387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Hayne, Paul O.</creatorcontrib><creatorcontrib>Bandfield, Joshua L.</creatorcontrib><creatorcontrib>Siegler, Matthew A.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><creatorcontrib>Ghent, Rebecca R.</creatorcontrib><creatorcontrib>Williams, Jean‐Pierre</creatorcontrib><creatorcontrib>Greenhagen, Benjamin T.</creatorcontrib><creatorcontrib>Aharonson, Oded</creatorcontrib><creatorcontrib>Elder, Catherine M.</creatorcontrib><creatorcontrib>Lucey, Paul G.</creatorcontrib><creatorcontrib>Paige, David A.</creatorcontrib><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><title>Journal of geophysical research. Planets</title><description>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales <1 Gyr. Regional‐ and local‐scale variations show prominent impact features <1 Gyr old, including higher thermal inertia (> 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (< 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater.
Plain Language Summary
We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith.
Key Points
We present global maps of regolith thermophysical properties
The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K
The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on >1 Gyr timescales</description><subject>Chronology</subject><subject>Dating techniques</subject><subject>Diurnal variations</subject><subject>Diviner</subject><subject>Ejecta</subject><subject>Ejection</subject><subject>Equatorial regions</subject><subject>Gardening</subject><subject>Heat transfer</subject><subject>impacts</subject><subject>Inertia</subject><subject>Infrared radiometers</subject><subject>lunar</subject><subject>Lunar regolith</subject><subject>Lunar spacecraft</subject><subject>Lunar surface</subject><subject>Meteorite craters</subject><subject>Meteorites</subject><subject>Moon</subject><subject>Physical properties</subject><subject>Planetary surfaces</subject><subject>Reconnaissance</subject><subject>Regolith</subject><subject>Scale height</subject><subject>Specific heat</subject><subject>Surface boundary layer</subject><subject>Temperature cycles</subject><subject>Temperature dependence</subject><subject>thermal</subject><subject>Thermal conductivity</subject><subject>Thermal inertia</subject><subject>Thermophysical properties</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYjR8QiSsFJ2nr5IhGN5iGQNM4V22X0kxtU9IO2L8nMJA44Yvt148_ZELOGVwxAH7NgeEiAYiExCMy4ixWgfKV498YFJ6SSd9vwZv0EhMjks9rm2c1XekXW5uhoutKu8Z21b43hdefnO20G4zuqS3pUGn6YG1LZ84239mteTOtdnS5azNHV9nG2EYPXkg-fJ9pdDuckZMyq3s9-fFj8jxL1tO7YPk4v5_eLIMsRMQg1shCyWQeY5nLkmG-gTCCCGUcKamUCDecFUwKJUtUCBlKFXMJhUBPZbEYk4vD3M7Z153uh3Rrd671K1OmJIIADtxTlweqcLbvnS7Tzp-ZuX3KIP16ZPr3kR4XB_zd1Hr_L5su5quEA0YoPgFc_nIG</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Hayne, Paul O.</creator><creator>Bandfield, Joshua L.</creator><creator>Siegler, Matthew A.</creator><creator>Vasavada, Ashwin R.</creator><creator>Ghent, Rebecca R.</creator><creator>Williams, Jean‐Pierre</creator><creator>Greenhagen, Benjamin T.</creator><creator>Aharonson, Oded</creator><creator>Elder, Catherine M.</creator><creator>Lucey, Paul G.</creator><creator>Paige, David A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4163-2760</orcidid><orcidid>https://orcid.org/0000-0001-9930-2495</orcidid><orcidid>https://orcid.org/0000-0002-9993-8861</orcidid><orcidid>https://orcid.org/0000-0003-2665-286X</orcidid><orcidid>https://orcid.org/0000-0003-4399-0449</orcidid></search><sort><creationdate>201712</creationdate><title>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</title><author>Hayne, Paul O. ; Bandfield, Joshua L. ; Siegler, Matthew A. ; Vasavada, Ashwin R. ; Ghent, Rebecca R. ; Williams, Jean‐Pierre ; Greenhagen, Benjamin T. ; Aharonson, Oded ; Elder, Catherine M. ; Lucey, Paul G. ; Paige, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4777-6e714818b67fb8f17bd045057865989934d21c18398f7970a7896280c37505a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chronology</topic><topic>Dating techniques</topic><topic>Diurnal variations</topic><topic>Diviner</topic><topic>Ejecta</topic><topic>Ejection</topic><topic>Equatorial regions</topic><topic>Gardening</topic><topic>Heat transfer</topic><topic>impacts</topic><topic>Inertia</topic><topic>Infrared radiometers</topic><topic>lunar</topic><topic>Lunar regolith</topic><topic>Lunar spacecraft</topic><topic>Lunar surface</topic><topic>Meteorite craters</topic><topic>Meteorites</topic><topic>Moon</topic><topic>Physical properties</topic><topic>Planetary surfaces</topic><topic>Reconnaissance</topic><topic>Regolith</topic><topic>Scale height</topic><topic>Specific heat</topic><topic>Surface boundary layer</topic><topic>Temperature cycles</topic><topic>Temperature dependence</topic><topic>thermal</topic><topic>Thermal conductivity</topic><topic>Thermal inertia</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayne, Paul O.</creatorcontrib><creatorcontrib>Bandfield, Joshua L.</creatorcontrib><creatorcontrib>Siegler, Matthew A.</creatorcontrib><creatorcontrib>Vasavada, Ashwin R.</creatorcontrib><creatorcontrib>Ghent, Rebecca R.</creatorcontrib><creatorcontrib>Williams, Jean‐Pierre</creatorcontrib><creatorcontrib>Greenhagen, Benjamin T.</creatorcontrib><creatorcontrib>Aharonson, Oded</creatorcontrib><creatorcontrib>Elder, Catherine M.</creatorcontrib><creatorcontrib>Lucey, Paul G.</creatorcontrib><creatorcontrib>Paige, David A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayne, Paul O.</au><au>Bandfield, Joshua L.</au><au>Siegler, Matthew A.</au><au>Vasavada, Ashwin R.</au><au>Ghent, Rebecca R.</au><au>Williams, Jean‐Pierre</au><au>Greenhagen, Benjamin T.</au><au>Aharonson, Oded</au><au>Elder, Catherine M.</au><au>Lucey, Paul G.</au><au>Paige, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2017-12</date><risdate>2017</risdate><volume>122</volume><issue>12</issue><spage>2371</spage><epage>2400</epage><pages>2371-2400</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales <1 Gyr. Regional‐ and local‐scale variations show prominent impact features <1 Gyr old, including higher thermal inertia (> 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (< 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater.
Plain Language Summary
We measured the Moon's temperature cycles with the Lunar Reconnaissance Orbiter's Diviner instrument to make the first global maps of important physical properties of the dusty surface layer. These maps reveal a rich new view of the last billion years of impact processes and volcanism on the Moon. Impacts by meteorites cause the breakdown of rocks and accumulation of regolith—the granular surface materials. Our results show that regolith formation is a rapid process, which homogenizes and redistributes fine particles over large distances. These new observations provide a wealth of data for future study and also suggest a new technique for determining the ages of craters on the Moon and other planetary surfaces, using temperatures to infer the depth of accumulated regolith.
Key Points
We present global maps of regolith thermophysical properties
The Moon's upper ~4–7 cm of regolith has a globally averaged thermal inertia of ~55 J m−2 K−1 s−1/2 at a reference temperature of 273 K
The upper lunar regolith is remarkably uniform, with the upper ~10 cm homogenized on >1 Gyr timescales</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JE005387</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4163-2760</orcidid><orcidid>https://orcid.org/0000-0001-9930-2495</orcidid><orcidid>https://orcid.org/0000-0002-9993-8861</orcidid><orcidid>https://orcid.org/0000-0003-2665-286X</orcidid><orcidid>https://orcid.org/0000-0003-4399-0449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9097 |
ispartof | Journal of geophysical research. Planets, 2017-12, Vol.122 (12), p.2371-2400 |
issn | 2169-9097 2169-9100 |
language | eng |
recordid | cdi_proquest_journals_1987030202 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | Chronology Dating techniques Diurnal variations Diviner Ejecta Ejection Equatorial regions Gardening Heat transfer impacts Inertia Infrared radiometers lunar Lunar regolith Lunar spacecraft Lunar surface Meteorite craters Meteorites Moon Physical properties Planetary surfaces Reconnaissance Regolith Scale height Specific heat Surface boundary layer Temperature cycles Temperature dependence thermal Thermal conductivity Thermal inertia Thermophysical properties |
title | Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Regolith%20Thermophysical%20Properties%20of%20the%20Moon%20From%20the%20Diviner%20Lunar%20Radiometer%20Experiment&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Hayne,%20Paul%20O.&rft.date=2017-12&rft.volume=122&rft.issue=12&rft.spage=2371&rft.epage=2400&rft.pages=2371-2400&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/2017JE005387&rft_dat=%3Cproquest_cross%3E1987030202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987030202&rft_id=info:pmid/&rfr_iscdi=true |