A Domain with Non-plurisubharmonic Squeezing Function

We construct a strictly pseudoconvex domain with smooth boundary whose squeezing function is not plurisubharmonic.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2018, Vol.28 (1), p.13-21
Hauptverfasser: Fornæss, John Erik, Shcherbina, Nikolay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 13
container_title The Journal of Geometric Analysis
container_volume 28
creator Fornæss, John Erik
Shcherbina, Nikolay
description We construct a strictly pseudoconvex domain with smooth boundary whose squeezing function is not plurisubharmonic.
doi_str_mv 10.1007/s12220-017-9782-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1987004999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339664</galeid><sourcerecordid>A707339664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-78523e6de8cb8c5dae30b9c5b1693ea1f1d1dadce675c067bcb649e4c11b02a63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gku0k2x1KtCkUPKngL2Wy2TWmTmuwi-utNWQ9eZA4zDO8zHy9ClwSuCYC4SYRSChiIwFLUFIsjNCGMSQxA349zDQwwl5SforOUNgAVLysxQWxW3Iaddr74dP26eAoe77dDdGlo1jrugnemePkYrP12flUsBm96F_w5Oun0NtmL3zxFb4u71_kDXj7fP85nS2xKxnosakZLy1tbm6Y2rNW2hEYa1hAuS6tJR1rS6tZYLpgBLhrT8ErayhDSANW8nKKrce4-hnxE6tUmDNHnlYrIWuQvpJRZdT2qVnprlfNd6KM2OVq7cyZ427ncnwkQZSk5rzJARsDEkFK0ndpHt9PxSxFQBzvVaKfKdqqDnUpkho5Mylq_svHPKf9CPwctd0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987004999</pqid></control><display><type>article</type><title>A Domain with Non-plurisubharmonic Squeezing Function</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fornæss, John Erik ; Shcherbina, Nikolay</creator><creatorcontrib>Fornæss, John Erik ; Shcherbina, Nikolay</creatorcontrib><description>We construct a strictly pseudoconvex domain with smooth boundary whose squeezing function is not plurisubharmonic.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-017-9782-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2018, Vol.28 (1), p.13-21</ispartof><rights>Mathematica Josephina, Inc. 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-78523e6de8cb8c5dae30b9c5b1693ea1f1d1dadce675c067bcb649e4c11b02a63</citedby><cites>FETCH-LOGICAL-c355t-78523e6de8cb8c5dae30b9c5b1693ea1f1d1dadce675c067bcb649e4c11b02a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-017-9782-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-017-9782-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Fornæss, John Erik</creatorcontrib><creatorcontrib>Shcherbina, Nikolay</creatorcontrib><title>A Domain with Non-plurisubharmonic Squeezing Function</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We construct a strictly pseudoconvex domain with smooth boundary whose squeezing function is not plurisubharmonic.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gku0k2x1KtCkUPKngL2Wy2TWmTmuwi-utNWQ9eZA4zDO8zHy9ClwSuCYC4SYRSChiIwFLUFIsjNCGMSQxA349zDQwwl5SforOUNgAVLysxQWxW3Iaddr74dP26eAoe77dDdGlo1jrugnemePkYrP12flUsBm96F_w5Oun0NtmL3zxFb4u71_kDXj7fP85nS2xKxnosakZLy1tbm6Y2rNW2hEYa1hAuS6tJR1rS6tZYLpgBLhrT8ErayhDSANW8nKKrce4-hnxE6tUmDNHnlYrIWuQvpJRZdT2qVnprlfNd6KM2OVq7cyZ427ncnwkQZSk5rzJARsDEkFK0ndpHt9PxSxFQBzvVaKfKdqqDnUpkho5Mylq_svHPKf9CPwctd0g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Fornæss, John Erik</creator><creator>Shcherbina, Nikolay</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>2018</creationdate><title>A Domain with Non-plurisubharmonic Squeezing Function</title><author>Fornæss, John Erik ; Shcherbina, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-78523e6de8cb8c5dae30b9c5b1693ea1f1d1dadce675c067bcb649e4c11b02a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fornæss, John Erik</creatorcontrib><creatorcontrib>Shcherbina, Nikolay</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fornæss, John Erik</au><au>Shcherbina, Nikolay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Domain with Non-plurisubharmonic Squeezing Function</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>1</issue><spage>13</spage><epage>21</epage><pages>13-21</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We construct a strictly pseudoconvex domain with smooth boundary whose squeezing function is not plurisubharmonic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-017-9782-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2018, Vol.28 (1), p.13-21
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_1987004999
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title A Domain with Non-plurisubharmonic Squeezing Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Domain%20with%20Non-plurisubharmonic%20Squeezing%20Function&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Forn%C3%A6ss,%20John%20Erik&rft.date=2018&rft.volume=28&rft.issue=1&rft.spage=13&rft.epage=21&rft.pages=13-21&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-017-9782-7&rft_dat=%3Cgale_proqu%3EA707339664%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987004999&rft_id=info:pmid/&rft_galeid=A707339664&rfr_iscdi=true