EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET
Recent research has shown the importance of time horizons in models of learning in finance. The dynamics of how agents adjust to believe that the world around them is stationary may be just as crucial in the convergence to a rational expectations equilibrium as getting parameters and model specifica...
Gespeichert in:
Veröffentlicht in: | Macroeconomic dynamics 2001-04, Vol.5 (2), p.225-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 225 |
container_title | Macroeconomic dynamics |
container_volume | 5 |
creator | LeBaron, Blake |
description | Recent research has shown the importance of time horizons in models of learning in finance. The dynamics of how agents adjust to believe that the world around them is stationary may be just as crucial in the convergence to a rational expectations equilibrium as getting parameters and model specifications correct in the learning process. This paper explores the process of this evolution in learning and time horizons in a simple agent-based financial market. The results indicate that, although the simple model structure used here replicates usual rational expectations results with long-horizon agents, the route to evolving a population of both long- and short-horizon agents to long horizons alone may be difficult. Furthermore, populations with both short- and long-horizon agents increase return variability, and leave patterns in volatility and trading volume similar to actual financial markets. |
doi_str_mv | 10.1017/S1365100501019058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198698107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1365100501019058</cupid><sourcerecordid>1410540471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-d174266bbb795ae63cbdffe5b491fd41d2ff3cc9f0196b46503a1b6fa23c0e833</originalsourceid><addsrcrecordid>eNp1UEtPwkAQ3hhNRPQHeNt4r850u9uutwoFGqBNaPHgpem2uwYigls4-O9dAgcT42ke32MmHyH3CI8IGD4VyARHAA5ulMCjC9LDQEgvAi4uXe9g74hfk5uuWwOgYL7skefkNZ8tyzTPaJwNaZnOEzrJF-lbnhU0PS5pPE6y0nuJi2RIizIfTOk8XkyT8pZcmfqj03fn2ifLUVIOJt4sH6eDeOY1gYS912IY-EIopULJay1Yo1pjNFeBRNMG2PrGsKaRxv0tVCA4sBqVMLXPGtARY33ycPLd2e3XQXf7ar092E93skIZCRkhhI6EJ1Jjt11ntal2drWp7XeFUB0Tqv4k5DTsrKk3yq7ad_3L-V_VD0mOYUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198698107</pqid></control><display><type>article</type><title>EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET</title><source>Cambridge University Press Journals Complete</source><creator>LeBaron, Blake</creator><creatorcontrib>LeBaron, Blake</creatorcontrib><description>Recent research has shown the importance of time horizons in models of learning in finance. The dynamics of how agents adjust to believe that the world around them is stationary may be just as crucial in the convergence to a rational expectations equilibrium as getting parameters and model specifications correct in the learning process. This paper explores the process of this evolution in learning and time horizons in a simple agent-based financial market. The results indicate that, although the simple model structure used here replicates usual rational expectations results with long-horizon agents, the route to evolving a population of both long- and short-horizon agents to long horizons alone may be difficult. Furthermore, populations with both short- and long-horizon agents increase return variability, and leave patterns in volatility and trading volume similar to actual financial markets.</description><identifier>ISSN: 1365-1005</identifier><identifier>EISSN: 1469-8056</identifier><identifier>DOI: 10.1017/S1365100501019058</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Economic theory ; Equilibrium ; Learning ; Macroeconomics ; Neural networks ; Parameter estimation ; Securities markets ; Time series ; Volatility</subject><ispartof>Macroeconomic dynamics, 2001-04, Vol.5 (2), p.225-254</ispartof><rights>2001 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-d174266bbb795ae63cbdffe5b491fd41d2ff3cc9f0196b46503a1b6fa23c0e833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1365100501019058/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27928,27929,55632</link.rule.ids></links><search><creatorcontrib>LeBaron, Blake</creatorcontrib><title>EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET</title><title>Macroeconomic dynamics</title><addtitle>Macroecon. Dynam</addtitle><description>Recent research has shown the importance of time horizons in models of learning in finance. The dynamics of how agents adjust to believe that the world around them is stationary may be just as crucial in the convergence to a rational expectations equilibrium as getting parameters and model specifications correct in the learning process. This paper explores the process of this evolution in learning and time horizons in a simple agent-based financial market. The results indicate that, although the simple model structure used here replicates usual rational expectations results with long-horizon agents, the route to evolving a population of both long- and short-horizon agents to long horizons alone may be difficult. Furthermore, populations with both short- and long-horizon agents increase return variability, and leave patterns in volatility and trading volume similar to actual financial markets.</description><subject>Economic theory</subject><subject>Equilibrium</subject><subject>Learning</subject><subject>Macroeconomics</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Securities markets</subject><subject>Time series</subject><subject>Volatility</subject><issn>1365-1005</issn><issn>1469-8056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UEtPwkAQ3hhNRPQHeNt4r850u9uutwoFGqBNaPHgpem2uwYigls4-O9dAgcT42ke32MmHyH3CI8IGD4VyARHAA5ulMCjC9LDQEgvAi4uXe9g74hfk5uuWwOgYL7skefkNZ8tyzTPaJwNaZnOEzrJF-lbnhU0PS5pPE6y0nuJi2RIizIfTOk8XkyT8pZcmfqj03fn2ifLUVIOJt4sH6eDeOY1gYS912IY-EIopULJay1Yo1pjNFeBRNMG2PrGsKaRxv0tVCA4sBqVMLXPGtARY33ycPLd2e3XQXf7ar092E93skIZCRkhhI6EJ1Jjt11ntal2drWp7XeFUB0Tqv4k5DTsrKk3yq7ad_3L-V_VD0mOYUY</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>LeBaron, Blake</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010401</creationdate><title>EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET</title><author>LeBaron, Blake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-d174266bbb795ae63cbdffe5b491fd41d2ff3cc9f0196b46503a1b6fa23c0e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Economic theory</topic><topic>Equilibrium</topic><topic>Learning</topic><topic>Macroeconomics</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Securities markets</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBaron, Blake</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Macroeconomic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBaron, Blake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET</atitle><jtitle>Macroeconomic dynamics</jtitle><addtitle>Macroecon. Dynam</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>5</volume><issue>2</issue><spage>225</spage><epage>254</epage><pages>225-254</pages><issn>1365-1005</issn><eissn>1469-8056</eissn><abstract>Recent research has shown the importance of time horizons in models of learning in finance. The dynamics of how agents adjust to believe that the world around them is stationary may be just as crucial in the convergence to a rational expectations equilibrium as getting parameters and model specifications correct in the learning process. This paper explores the process of this evolution in learning and time horizons in a simple agent-based financial market. The results indicate that, although the simple model structure used here replicates usual rational expectations results with long-horizon agents, the route to evolving a population of both long- and short-horizon agents to long horizons alone may be difficult. Furthermore, populations with both short- and long-horizon agents increase return variability, and leave patterns in volatility and trading volume similar to actual financial markets.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1365100501019058</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1005 |
ispartof | Macroeconomic dynamics, 2001-04, Vol.5 (2), p.225-254 |
issn | 1365-1005 1469-8056 |
language | eng |
recordid | cdi_proquest_journals_198698107 |
source | Cambridge University Press Journals Complete |
subjects | Economic theory Equilibrium Learning Macroeconomics Neural networks Parameter estimation Securities markets Time series Volatility |
title | EVOLUTION AND TIME HORIZONS IN AN AGENT-BASED STOCK MARKET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVOLUTION%20AND%20TIME%20HORIZONS%20IN%20AN%20AGENT-BASED%20STOCK%20MARKET&rft.jtitle=Macroeconomic%20dynamics&rft.au=LeBaron,%20Blake&rft.date=2001-04-01&rft.volume=5&rft.issue=2&rft.spage=225&rft.epage=254&rft.pages=225-254&rft.issn=1365-1005&rft.eissn=1469-8056&rft_id=info:doi/10.1017/S1365100501019058&rft_dat=%3Cproquest_cross%3E1410540471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198698107&rft_id=info:pmid/&rft_cupid=10_1017_S1365100501019058&rfr_iscdi=true |