On the Selmer group attached to a modular form and an algebraic Hecke character

We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990 ) and by Nekovář (Invent Math 107(1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2018, Vol.45 (1), p.141-169
1. Verfasser: Elias, Yara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 141
container_title The Ramanujan journal
container_volume 45
creator Elias, Yara
description We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990 ) and by Nekovář (Invent Math 107(1):99–125, 1992 ), while the key object of the Euler system, the generalized Heegner cycles were first considered by Bertolini et al. (Duke Math J 162(6):1033–1148, 2013 ).
doi_str_mv 10.1007/s11139-016-9866-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1986424714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986424714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64c8833f0e16d5aef59ed05201a9631d0af367b8d4f6be784663f0f18c70848f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqXwA9gsMRvuYsdxRlQBRarUAZgt1zn3g3wUOxn497gKAwvD6W543vekJ8tuEe4RoHyIiCgqDqh4pZXieJbNsChzXgkQ5-kWOucSKrjMrmI8AIAEUc6y9bpjw47YGzUtBbYN_Xhkdhis21HNhp5Z1vb12NjAfB9aZrs6DbPNljbB7h1bkvsk5nY2WDdQuM4uvG0i3fzuefbx_PS-WPLV-uV18bjiTqAauJJOayE8EKq6sOSLimoockBbKYE1WC9UudG19GpDpZZKJdijdiVoqb2YZ3dT7zH0XyPFwRz6MXTppcEkQOayRJkonCgX-hgDeXMM-9aGb4NgTt7M5M0kb-bkzWDK5FMmJrbbUvjT_G_oB-l5bp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986424714</pqid></control><display><type>article</type><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elias, Yara</creator><creatorcontrib>Elias, Yara</creatorcontrib><description>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990 ) and by Nekovář (Invent Math 107(1):99–125, 1992 ), while the key object of the Euler system, the generalized Heegner cycles were first considered by Bertolini et al. (Duke Math J 162(6):1033–1148, 2013 ).</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-016-9866-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analytic functions ; Automotive parts ; Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Modular construction ; Number Theory</subject><ispartof>The Ramanujan journal, 2018, Vol.45 (1), p.141-169</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64c8833f0e16d5aef59ed05201a9631d0af367b8d4f6be784663f0f18c70848f3</citedby><cites>FETCH-LOGICAL-c316t-64c8833f0e16d5aef59ed05201a9631d0af367b8d4f6be784663f0f18c70848f3</cites><orcidid>0000-0001-6665-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-016-9866-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-016-9866-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Elias, Yara</creatorcontrib><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990 ) and by Nekovář (Invent Math 107(1):99–125, 1992 ), while the key object of the Euler system, the generalized Heegner cycles were first considered by Bertolini et al. (Duke Math J 162(6):1033–1148, 2013 ).</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>Automotive parts</subject><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular construction</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhiMEEqXwA9gsMRvuYsdxRlQBRarUAZgt1zn3g3wUOxn497gKAwvD6W543vekJ8tuEe4RoHyIiCgqDqh4pZXieJbNsChzXgkQ5-kWOucSKrjMrmI8AIAEUc6y9bpjw47YGzUtBbYN_Xhkdhis21HNhp5Z1vb12NjAfB9aZrs6DbPNljbB7h1bkvsk5nY2WDdQuM4uvG0i3fzuefbx_PS-WPLV-uV18bjiTqAauJJOayE8EKq6sOSLimoockBbKYE1WC9UudG19GpDpZZKJdijdiVoqb2YZ3dT7zH0XyPFwRz6MXTppcEkQOayRJkonCgX-hgDeXMM-9aGb4NgTt7M5M0kb-bkzWDK5FMmJrbbUvjT_G_oB-l5bp8</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Elias, Yara</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6665-6289</orcidid></search><sort><creationdate>2018</creationdate><title>On the Selmer group attached to a modular form and an algebraic Hecke character</title><author>Elias, Yara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64c8833f0e16d5aef59ed05201a9631d0af367b8d4f6be784663f0f18c70848f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>Automotive parts</topic><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular construction</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, Yara</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, Yara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Selmer group attached to a modular form and an algebraic Hecke character</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2018</date><risdate>2018</risdate><volume>45</volume><issue>1</issue><spage>141</spage><epage>169</epage><pages>141-169</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990 ) and by Nekovář (Invent Math 107(1):99–125, 1992 ), while the key object of the Euler system, the generalized Heegner cycles were first considered by Bertolini et al. (Duke Math J 162(6):1033–1148, 2013 ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-016-9866-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6665-6289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2018, Vol.45 (1), p.141-169
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_1986424714
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analytic functions
Automotive parts
Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Modular construction
Number Theory
title On the Selmer group attached to a modular form and an algebraic Hecke character
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Selmer%20group%20attached%20to%20a%20modular%20form%20and%20an%20algebraic%20Hecke%20character&rft.jtitle=The%20Ramanujan%20journal&rft.au=Elias,%20Yara&rft.date=2018&rft.volume=45&rft.issue=1&rft.spage=141&rft.epage=169&rft.pages=141-169&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-016-9866-1&rft_dat=%3Cproquest_cross%3E1986424714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986424714&rft_id=info:pmid/&rfr_iscdi=true