LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE
We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by consid...
Gespeichert in:
Veröffentlicht in: | The bulletin of symbolic logic 2016-06, Vol.22 (2), p.170-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 170 |
container_title | The bulletin of symbolic logic |
container_volume | 22 |
creator | CARAMELLO, OLIVIA RUSSO, ANNA CARLA |
description | We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang’s MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element. |
doi_str_mv | 10.1017/bsl.2015.47 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1986399425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_bsl_2015_47</cupid><jstor_id>43830156</jstor_id><sourcerecordid>43830156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c34ef6bf7983f9455c1910ad80c01e29ae95dbebb961f359d860f1094521ee9a3</originalsourceid><addsrcrecordid>eNpt0M1LwzAYBvAgCs7pybNQ8CiZSZu0ibesy7ZCXUvb7Rr6kcrGZme6HfzvzdgQD16SQH48L-8DwCNGI4xw8Fr125GLMB2R4AoMMCcepIyTa_tGAYeMM_8W3PX9BiFMfEIHYBmLoohCCZNsIjM5ccRYxpFYOLMsWaa5IxYTJ5XZVIaF876CIp7JcSbyN0c4RZImOSzmMsmkjTixPLUuWsl7cNOW214_XO4hWE5lEc5hnMyiUMSw9ig72JPo1q_agDOv5YTSGnOMyoahGmHt8lJz2lS6qriPW4_yhvmoxchKF2vNS28Ins-5e9N9HXV_UJvuaD7tSIXtrh7nxKVWvZxVbbq-N7pVe7PeleZbYaROvSnbmzr1pkhg9dNZb_pDZ34p8ZhnhW__4SWt3FVm3XzoP0P_yfsByRRwrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986399425</pqid></control><display><type>article</type><title>LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>CARAMELLO, OLIVIA ; RUSSO, ANNA CARLA</creator><creatorcontrib>CARAMELLO, OLIVIA ; RUSSO, ANNA CARLA</creatorcontrib><description>We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang’s MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2015.47</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algebra ; Boolean ; Boolean data ; Cartesianism ; Classification ; Equivalence ; Equivalence relation ; Functors ; Group theory ; Homomorphisms ; Mathematical theorems ; Mathematical topoi ; Monoids ; Semantics ; Sentences ; Sequents</subject><ispartof>The bulletin of symbolic logic, 2016-06, Vol.22 (2), p.170-214</ispartof><rights>Copyright © The Association for Symbolic Logic 2016</rights><rights>Copyright © 2016 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c34ef6bf7983f9455c1910ad80c01e29ae95dbebb961f359d860f1094521ee9a3</citedby><cites>FETCH-LOGICAL-c358t-c34ef6bf7983f9455c1910ad80c01e29ae95dbebb961f359d860f1094521ee9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43830156$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1079898615000475/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,801,830,27911,27912,55615,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>CARAMELLO, OLIVIA</creatorcontrib><creatorcontrib>RUSSO, ANNA CARLA</creatorcontrib><title>LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE</title><title>The bulletin of symbolic logic</title><addtitle>Bull. symb. log</addtitle><description>We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang’s MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element.</description><subject>Algebra</subject><subject>Boolean</subject><subject>Boolean data</subject><subject>Cartesianism</subject><subject>Classification</subject><subject>Equivalence</subject><subject>Equivalence relation</subject><subject>Functors</subject><subject>Group theory</subject><subject>Homomorphisms</subject><subject>Mathematical theorems</subject><subject>Mathematical topoi</subject><subject>Monoids</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Sequents</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0M1LwzAYBvAgCs7pybNQ8CiZSZu0ibesy7ZCXUvb7Rr6kcrGZme6HfzvzdgQD16SQH48L-8DwCNGI4xw8Fr125GLMB2R4AoMMCcepIyTa_tGAYeMM_8W3PX9BiFMfEIHYBmLoohCCZNsIjM5ccRYxpFYOLMsWaa5IxYTJ5XZVIaF876CIp7JcSbyN0c4RZImOSzmMsmkjTixPLUuWsl7cNOW214_XO4hWE5lEc5hnMyiUMSw9ig72JPo1q_agDOv5YTSGnOMyoahGmHt8lJz2lS6qriPW4_yhvmoxchKF2vNS28Ins-5e9N9HXV_UJvuaD7tSIXtrh7nxKVWvZxVbbq-N7pVe7PeleZbYaROvSnbmzr1pkhg9dNZb_pDZ34p8ZhnhW__4SWt3FVm3XzoP0P_yfsByRRwrA</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>CARAMELLO, OLIVIA</creator><creator>RUSSO, ANNA CARLA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201606</creationdate><title>LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE</title><author>CARAMELLO, OLIVIA ; RUSSO, ANNA CARLA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c34ef6bf7983f9455c1910ad80c01e29ae95dbebb961f359d860f1094521ee9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Boolean</topic><topic>Boolean data</topic><topic>Cartesianism</topic><topic>Classification</topic><topic>Equivalence</topic><topic>Equivalence relation</topic><topic>Functors</topic><topic>Group theory</topic><topic>Homomorphisms</topic><topic>Mathematical theorems</topic><topic>Mathematical topoi</topic><topic>Monoids</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Sequents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARAMELLO, OLIVIA</creatorcontrib><creatorcontrib>RUSSO, ANNA CARLA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARAMELLO, OLIVIA</au><au>RUSSO, ANNA CARLA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE</atitle><jtitle>The bulletin of symbolic logic</jtitle><addtitle>Bull. symb. log</addtitle><date>2016-06</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>170</spage><epage>214</epage><pages>170-214</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang’s MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2015.47</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2016-06, Vol.22 (2), p.170-214 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_proquest_journals_1986399425 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Cambridge University Press Journals Complete |
subjects | Algebra Boolean Boolean data Cartesianism Classification Equivalence Equivalence relation Functors Group theory Homomorphisms Mathematical theorems Mathematical topoi Monoids Semantics Sentences Sequents |
title | LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS: A TOPOS-THEORETIC PERSPECTIVE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LATTICE-ORDERED%20ABELIAN%20GROUPS%20AND%20PERFECT%20MV-ALGEBRAS:%20A%20TOPOS-THEORETIC%20PERSPECTIVE&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=CARAMELLO,%20OLIVIA&rft.date=2016-06&rft.volume=22&rft.issue=2&rft.spage=170&rft.epage=214&rft.pages=170-214&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2015.47&rft_dat=%3Cjstor_proqu%3E43830156%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986399425&rft_id=info:pmid/&rft_cupid=10_1017_bsl_2015_47&rft_jstor_id=43830156&rfr_iscdi=true |