Power Control for Passive QAM Multisensor Backscatter Communication Systems
To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize t...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2017 |
creator | Shi, Yanfeng Yan, Tingting Mo, Jinrong Hu, Shengbo |
description | To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput. |
doi_str_mv | 10.1155/2017/4319709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1986180731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986180731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</originalsourceid><addsrcrecordid>eNqF0EtLAzEQB_AgCtbqzbMseNS1eWwee6zFF7ZYUcFbSLNZ3NrdtEnW0m9v6hY9espk-DHD_AE4RfAKIUoHGCI-yAjKOcz3QA8xwVOOmdj_ren7ITjyfg4hI5yQHnic2rVxycg2wdlFUlqXTJX31ZdJnoeTZNIuQuVN42P_WulPr1UIP76u26aKv8o2ycvGB1P7Y3BQqoU3J7u3D95ub15H9-n46e5hNBynOsM8pAWGsKC8zBAsCREaZoIoJCASnOrZTCuaYaIwpIxxIbQgAuY5mbFCCCZyjEkfnHdzl86uWuODnNvWNXGlRLlgcRQnKKrLTmlnvXemlEtX1cptJIJyG5fcxiV3cUV-0fGPqinUuvpPn3XaRGNK9afjFfES8g3GaHHe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986180731</pqid></control><display><type>article</type><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo</creator><contributor>El-Bendary, Nashwa</contributor><creatorcontrib>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo ; El-Bendary, Nashwa</creatorcontrib><description>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2017/4319709</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Antennas ; Backscattering ; Circuits ; Communication ; Efficiency ; Energy ; Energy conservation ; Energy harvesting ; International conferences ; Mathematical models ; Open access ; Power consumption ; Power control ; Quadrature amplitude modulation ; Quality of service ; Radio frequency identification ; Sensors ; Subcarriers ; Transceivers ; Wireless networks</subject><ispartof>Journal of sensors, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Shengbo Hu et al.</rights><rights>Copyright © 2017 Shengbo Hu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</citedby><cites>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</cites><orcidid>0000-0003-2224-2353 ; 0000-0002-7891-2451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>El-Bendary, Nashwa</contributor><creatorcontrib>Shi, Yanfeng</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Mo, Jinrong</creatorcontrib><creatorcontrib>Hu, Shengbo</creatorcontrib><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><title>Journal of sensors</title><description>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</description><subject>Antennas</subject><subject>Backscattering</subject><subject>Circuits</subject><subject>Communication</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy harvesting</subject><subject>International conferences</subject><subject>Mathematical models</subject><subject>Open access</subject><subject>Power consumption</subject><subject>Power control</subject><subject>Quadrature amplitude modulation</subject><subject>Quality of service</subject><subject>Radio frequency identification</subject><subject>Sensors</subject><subject>Subcarriers</subject><subject>Transceivers</subject><subject>Wireless networks</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EtLAzEQB_AgCtbqzbMseNS1eWwee6zFF7ZYUcFbSLNZ3NrdtEnW0m9v6hY9espk-DHD_AE4RfAKIUoHGCI-yAjKOcz3QA8xwVOOmdj_ren7ITjyfg4hI5yQHnic2rVxycg2wdlFUlqXTJX31ZdJnoeTZNIuQuVN42P_WulPr1UIP76u26aKv8o2ycvGB1P7Y3BQqoU3J7u3D95ub15H9-n46e5hNBynOsM8pAWGsKC8zBAsCREaZoIoJCASnOrZTCuaYaIwpIxxIbQgAuY5mbFCCCZyjEkfnHdzl86uWuODnNvWNXGlRLlgcRQnKKrLTmlnvXemlEtX1cptJIJyG5fcxiV3cUV-0fGPqinUuvpPn3XaRGNK9afjFfES8g3GaHHe</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shi, Yanfeng</creator><creator>Yan, Tingting</creator><creator>Mo, Jinrong</creator><creator>Hu, Shengbo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2224-2353</orcidid><orcidid>https://orcid.org/0000-0002-7891-2451</orcidid></search><sort><creationdate>20170101</creationdate><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><author>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antennas</topic><topic>Backscattering</topic><topic>Circuits</topic><topic>Communication</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy harvesting</topic><topic>International conferences</topic><topic>Mathematical models</topic><topic>Open access</topic><topic>Power consumption</topic><topic>Power control</topic><topic>Quadrature amplitude modulation</topic><topic>Quality of service</topic><topic>Radio frequency identification</topic><topic>Sensors</topic><topic>Subcarriers</topic><topic>Transceivers</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yanfeng</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Mo, Jinrong</creatorcontrib><creatorcontrib>Hu, Shengbo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yanfeng</au><au>Yan, Tingting</au><au>Mo, Jinrong</au><au>Hu, Shengbo</au><au>El-Bendary, Nashwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Control for Passive QAM Multisensor Backscatter Communication Systems</atitle><jtitle>Journal of sensors</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/4319709</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2224-2353</orcidid><orcidid>https://orcid.org/0000-0002-7891-2451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2017-01, Vol.2017 (2017), p.1-9 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_1986180731 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Antennas Backscattering Circuits Communication Efficiency Energy Energy conservation Energy harvesting International conferences Mathematical models Open access Power consumption Power control Quadrature amplitude modulation Quality of service Radio frequency identification Sensors Subcarriers Transceivers Wireless networks |
title | Power Control for Passive QAM Multisensor Backscatter Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Control%20for%20Passive%20QAM%20Multisensor%20Backscatter%20Communication%20Systems&rft.jtitle=Journal%20of%20sensors&rft.au=Shi,%20Yanfeng&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2017/4319709&rft_dat=%3Cproquest_cross%3E1986180731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986180731&rft_id=info:pmid/&rfr_iscdi=true |