Power Control for Passive QAM Multisensor Backscatter Communication Systems

To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2017-01, Vol.2017 (2017), p.1-9
Hauptverfasser: Shi, Yanfeng, Yan, Tingting, Mo, Jinrong, Hu, Shengbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2017
container_start_page 1
container_title Journal of sensors
container_volume 2017
creator Shi, Yanfeng
Yan, Tingting
Mo, Jinrong
Hu, Shengbo
description To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.
doi_str_mv 10.1155/2017/4319709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1986180731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986180731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</originalsourceid><addsrcrecordid>eNqF0EtLAzEQB_AgCtbqzbMseNS1eWwee6zFF7ZYUcFbSLNZ3NrdtEnW0m9v6hY9espk-DHD_AE4RfAKIUoHGCI-yAjKOcz3QA8xwVOOmdj_ren7ITjyfg4hI5yQHnic2rVxycg2wdlFUlqXTJX31ZdJnoeTZNIuQuVN42P_WulPr1UIP76u26aKv8o2ycvGB1P7Y3BQqoU3J7u3D95ub15H9-n46e5hNBynOsM8pAWGsKC8zBAsCREaZoIoJCASnOrZTCuaYaIwpIxxIbQgAuY5mbFCCCZyjEkfnHdzl86uWuODnNvWNXGlRLlgcRQnKKrLTmlnvXemlEtX1cptJIJyG5fcxiV3cUV-0fGPqinUuvpPn3XaRGNK9afjFfES8g3GaHHe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986180731</pqid></control><display><type>article</type><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo</creator><contributor>El-Bendary, Nashwa</contributor><creatorcontrib>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo ; El-Bendary, Nashwa</creatorcontrib><description>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2017/4319709</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Antennas ; Backscattering ; Circuits ; Communication ; Efficiency ; Energy ; Energy conservation ; Energy harvesting ; International conferences ; Mathematical models ; Open access ; Power consumption ; Power control ; Quadrature amplitude modulation ; Quality of service ; Radio frequency identification ; Sensors ; Subcarriers ; Transceivers ; Wireless networks</subject><ispartof>Journal of sensors, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Shengbo Hu et al.</rights><rights>Copyright © 2017 Shengbo Hu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</citedby><cites>FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</cites><orcidid>0000-0003-2224-2353 ; 0000-0002-7891-2451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>El-Bendary, Nashwa</contributor><creatorcontrib>Shi, Yanfeng</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Mo, Jinrong</creatorcontrib><creatorcontrib>Hu, Shengbo</creatorcontrib><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><title>Journal of sensors</title><description>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</description><subject>Antennas</subject><subject>Backscattering</subject><subject>Circuits</subject><subject>Communication</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy harvesting</subject><subject>International conferences</subject><subject>Mathematical models</subject><subject>Open access</subject><subject>Power consumption</subject><subject>Power control</subject><subject>Quadrature amplitude modulation</subject><subject>Quality of service</subject><subject>Radio frequency identification</subject><subject>Sensors</subject><subject>Subcarriers</subject><subject>Transceivers</subject><subject>Wireless networks</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EtLAzEQB_AgCtbqzbMseNS1eWwee6zFF7ZYUcFbSLNZ3NrdtEnW0m9v6hY9espk-DHD_AE4RfAKIUoHGCI-yAjKOcz3QA8xwVOOmdj_ren7ITjyfg4hI5yQHnic2rVxycg2wdlFUlqXTJX31ZdJnoeTZNIuQuVN42P_WulPr1UIP76u26aKv8o2ycvGB1P7Y3BQqoU3J7u3D95ub15H9-n46e5hNBynOsM8pAWGsKC8zBAsCREaZoIoJCASnOrZTCuaYaIwpIxxIbQgAuY5mbFCCCZyjEkfnHdzl86uWuODnNvWNXGlRLlgcRQnKKrLTmlnvXemlEtX1cptJIJyG5fcxiV3cUV-0fGPqinUuvpPn3XaRGNK9afjFfES8g3GaHHe</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shi, Yanfeng</creator><creator>Yan, Tingting</creator><creator>Mo, Jinrong</creator><creator>Hu, Shengbo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2224-2353</orcidid><orcidid>https://orcid.org/0000-0002-7891-2451</orcidid></search><sort><creationdate>20170101</creationdate><title>Power Control for Passive QAM Multisensor Backscatter Communication Systems</title><author>Shi, Yanfeng ; Yan, Tingting ; Mo, Jinrong ; Hu, Shengbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-d200d57f410f338c0483a1801875cbbca5423a20566788c8380993b6d88689223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antennas</topic><topic>Backscattering</topic><topic>Circuits</topic><topic>Communication</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy harvesting</topic><topic>International conferences</topic><topic>Mathematical models</topic><topic>Open access</topic><topic>Power consumption</topic><topic>Power control</topic><topic>Quadrature amplitude modulation</topic><topic>Quality of service</topic><topic>Radio frequency identification</topic><topic>Sensors</topic><topic>Subcarriers</topic><topic>Transceivers</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yanfeng</creatorcontrib><creatorcontrib>Yan, Tingting</creatorcontrib><creatorcontrib>Mo, Jinrong</creatorcontrib><creatorcontrib>Hu, Shengbo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yanfeng</au><au>Yan, Tingting</au><au>Mo, Jinrong</au><au>Hu, Shengbo</au><au>El-Bendary, Nashwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Control for Passive QAM Multisensor Backscatter Communication Systems</atitle><jtitle>Journal of sensors</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM) multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/4319709</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2224-2353</orcidid><orcidid>https://orcid.org/0000-0002-7891-2451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2017-01, Vol.2017 (2017), p.1-9
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_1986180731
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Antennas
Backscattering
Circuits
Communication
Efficiency
Energy
Energy conservation
Energy harvesting
International conferences
Mathematical models
Open access
Power consumption
Power control
Quadrature amplitude modulation
Quality of service
Radio frequency identification
Sensors
Subcarriers
Transceivers
Wireless networks
title Power Control for Passive QAM Multisensor Backscatter Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Control%20for%20Passive%20QAM%20Multisensor%20Backscatter%20Communication%20Systems&rft.jtitle=Journal%20of%20sensors&rft.au=Shi,%20Yanfeng&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2017/4319709&rft_dat=%3Cproquest_cross%3E1986180731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986180731&rft_id=info:pmid/&rfr_iscdi=true