Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation

We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2018-01, Vol.10 (1), p.320-328
Hauptverfasser: Bian, Zhoufeng, Kawi, Sibudjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 1
container_start_page 320
container_title ChemCatChem
container_volume 10
creator Bian, Zhoufeng
Kawi, Sibudjing
description We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM. Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.
doi_str_mv 10.1002/cctc.201701024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1985887806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985887806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</originalsourceid><addsrcrecordid>eNqFkUFPAjEQhTdGExG9em7iGWx3Ke16gqygJqCJ4HnT7U6huLTYLSF74yeYePTf8UtcgsGjp3nJvG8mLy8IrgluE4zDWym9bIeYMExw2DkJGoR3WSvicXx61ByfBxdlucC4G0eMNoLviTD5Rsv5bvs50u-AJrrQUvSede-g0HhdeC2tg932azKHokCJ8KKoSo-UdcjPAY3spsansFyBE37tAN27Cr1CvV9qM0NWoTH4uTBwhxJrlDawBOPRQCmQHvVnQpv6XCJcZg0a1pTw2prL4EyJooSr39kM3oaDafLYGr08PCX9UUtGPOrUqYARIvfBQ04lpURmmQKqsjCEKORxxnhI4gxTIXImMMsjTlWOScQZZDGNmsHN4e7K2Y81lD5d2LUz9cuUxJxyzjju1q72wSWdLUsHKl05vRSuSglO9wWk-wLSYwE1EB-AjS6g-sedJsk0-WN_AGCbjpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985887806</pqid></control><display><type>article</type><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bian, Zhoufeng ; Kawi, Sibudjing</creator><creatorcontrib>Bian, Zhoufeng ; Kawi, Sibudjing</creatorcontrib><description>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM. Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201701024</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon ; Catalysis ; Catalysts ; Chemical synthesis ; Deactivation ; heterogeneous catalysis ; Low temperature ; Methane ; Nanomaterials ; nanoparticles ; Nanospheres ; nickel ; Porous materials ; Reforming ; Shells ; silica ; Silicon dioxide ; Thermogravimetric analysis</subject><ispartof>ChemCatChem, 2018-01, Vol.10 (1), p.320-328</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</citedby><cites>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201701024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201701024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bian, Zhoufeng</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><title>ChemCatChem</title><description>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM. Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</description><subject>Ammonia</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Deactivation</subject><subject>heterogeneous catalysis</subject><subject>Low temperature</subject><subject>Methane</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanospheres</subject><subject>nickel</subject><subject>Porous materials</subject><subject>Reforming</subject><subject>Shells</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>Thermogravimetric analysis</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPAjEQhTdGExG9em7iGWx3Ke16gqygJqCJ4HnT7U6huLTYLSF74yeYePTf8UtcgsGjp3nJvG8mLy8IrgluE4zDWym9bIeYMExw2DkJGoR3WSvicXx61ByfBxdlucC4G0eMNoLviTD5Rsv5bvs50u-AJrrQUvSede-g0HhdeC2tg932azKHokCJ8KKoSo-UdcjPAY3spsansFyBE37tAN27Cr1CvV9qM0NWoTH4uTBwhxJrlDawBOPRQCmQHvVnQpv6XCJcZg0a1pTw2prL4EyJooSr39kM3oaDafLYGr08PCX9UUtGPOrUqYARIvfBQ04lpURmmQKqsjCEKORxxnhI4gxTIXImMMsjTlWOScQZZDGNmsHN4e7K2Y81lD5d2LUz9cuUxJxyzjju1q72wSWdLUsHKl05vRSuSglO9wWk-wLSYwE1EB-AjS6g-sedJsk0-WN_AGCbjpU</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Bian, Zhoufeng</creator><creator>Kawi, Sibudjing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180109</creationdate><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><author>Bian, Zhoufeng ; Kawi, Sibudjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Deactivation</topic><topic>heterogeneous catalysis</topic><topic>Low temperature</topic><topic>Methane</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanospheres</topic><topic>nickel</topic><topic>Porous materials</topic><topic>Reforming</topic><topic>Shells</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Zhoufeng</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Zhoufeng</au><au>Kawi, Sibudjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</atitle><jtitle>ChemCatChem</jtitle><date>2018-01-09</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>320</spage><epage>328</epage><pages>320-328</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM. Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201701024</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2018-01, Vol.10 (1), p.320-328
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_1985887806
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Carbon
Catalysis
Catalysts
Chemical synthesis
Deactivation
heterogeneous catalysis
Low temperature
Methane
Nanomaterials
nanoparticles
Nanospheres
nickel
Porous materials
Reforming
Shells
silica
Silicon dioxide
Thermogravimetric analysis
title Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sandwich%E2%80%90Like%20Silica@Ni@Silica%20Multicore%E2%80%93Shell%20Catalyst%20for%20the%20Low%E2%80%90Temperature%20Dry%20Reforming%20of%20Methane:%20Confinement%20Effect%20Against%20Carbon%20Formation&rft.jtitle=ChemCatChem&rft.au=Bian,%20Zhoufeng&rft.date=2018-01-09&rft.volume=10&rft.issue=1&rft.spage=320&rft.epage=328&rft.pages=320-328&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201701024&rft_dat=%3Cproquest_cross%3E1985887806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985887806&rft_id=info:pmid/&rfr_iscdi=true