Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation
We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolys...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2018-01, Vol.10 (1), p.320-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 1 |
container_start_page | 320 |
container_title | ChemCatChem |
container_volume | 10 |
creator | Bian, Zhoufeng Kawi, Sibudjing |
description | We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM.
Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect. |
doi_str_mv | 10.1002/cctc.201701024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1985887806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985887806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</originalsourceid><addsrcrecordid>eNqFkUFPAjEQhTdGExG9em7iGWx3Ke16gqygJqCJ4HnT7U6huLTYLSF74yeYePTf8UtcgsGjp3nJvG8mLy8IrgluE4zDWym9bIeYMExw2DkJGoR3WSvicXx61ByfBxdlucC4G0eMNoLviTD5Rsv5bvs50u-AJrrQUvSede-g0HhdeC2tg932azKHokCJ8KKoSo-UdcjPAY3spsansFyBE37tAN27Cr1CvV9qM0NWoTH4uTBwhxJrlDawBOPRQCmQHvVnQpv6XCJcZg0a1pTw2prL4EyJooSr39kM3oaDafLYGr08PCX9UUtGPOrUqYARIvfBQ04lpURmmQKqsjCEKORxxnhI4gxTIXImMMsjTlWOScQZZDGNmsHN4e7K2Y81lD5d2LUz9cuUxJxyzjju1q72wSWdLUsHKl05vRSuSglO9wWk-wLSYwE1EB-AjS6g-sedJsk0-WN_AGCbjpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985887806</pqid></control><display><type>article</type><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bian, Zhoufeng ; Kawi, Sibudjing</creator><creatorcontrib>Bian, Zhoufeng ; Kawi, Sibudjing</creatorcontrib><description>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM.
Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201701024</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon ; Catalysis ; Catalysts ; Chemical synthesis ; Deactivation ; heterogeneous catalysis ; Low temperature ; Methane ; Nanomaterials ; nanoparticles ; Nanospheres ; nickel ; Porous materials ; Reforming ; Shells ; silica ; Silicon dioxide ; Thermogravimetric analysis</subject><ispartof>ChemCatChem, 2018-01, Vol.10 (1), p.320-328</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</citedby><cites>FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201701024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201701024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bian, Zhoufeng</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><title>ChemCatChem</title><description>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM.
Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</description><subject>Ammonia</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Deactivation</subject><subject>heterogeneous catalysis</subject><subject>Low temperature</subject><subject>Methane</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Nanospheres</subject><subject>nickel</subject><subject>Porous materials</subject><subject>Reforming</subject><subject>Shells</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>Thermogravimetric analysis</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPAjEQhTdGExG9em7iGWx3Ke16gqygJqCJ4HnT7U6huLTYLSF74yeYePTf8UtcgsGjp3nJvG8mLy8IrgluE4zDWym9bIeYMExw2DkJGoR3WSvicXx61ByfBxdlucC4G0eMNoLviTD5Rsv5bvs50u-AJrrQUvSede-g0HhdeC2tg932azKHokCJ8KKoSo-UdcjPAY3spsansFyBE37tAN27Cr1CvV9qM0NWoTH4uTBwhxJrlDawBOPRQCmQHvVnQpv6XCJcZg0a1pTw2prL4EyJooSr39kM3oaDafLYGr08PCX9UUtGPOrUqYARIvfBQ04lpURmmQKqsjCEKORxxnhI4gxTIXImMMsjTlWOScQZZDGNmsHN4e7K2Y81lD5d2LUz9cuUxJxyzjju1q72wSWdLUsHKl05vRSuSglO9wWk-wLSYwE1EB-AjS6g-sedJsk0-WN_AGCbjpU</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Bian, Zhoufeng</creator><creator>Kawi, Sibudjing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180109</creationdate><title>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</title><author>Bian, Zhoufeng ; Kawi, Sibudjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-38e711c0170285c551cbbfe5fb22e3289b78219b05aad7a07d385fd01387eb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Deactivation</topic><topic>heterogeneous catalysis</topic><topic>Low temperature</topic><topic>Methane</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Nanospheres</topic><topic>nickel</topic><topic>Porous materials</topic><topic>Reforming</topic><topic>Shells</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Zhoufeng</creatorcontrib><creatorcontrib>Kawi, Sibudjing</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Zhoufeng</au><au>Kawi, Sibudjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation</atitle><jtitle>ChemCatChem</jtitle><date>2018-01-09</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>320</spage><epage>328</epage><pages>320-328</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM.
Resistance is useful: A new sandwich‐like silica@Ni@silica multicore–shell catalyst is prepared. This catalyst shows a stable catalytic performance and high carbon resistance for the low‐temperature dry reforming of methane because of the confinement effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201701024</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2018-01, Vol.10 (1), p.320-328 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_1985887806 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia Carbon Catalysis Catalysts Chemical synthesis Deactivation heterogeneous catalysis Low temperature Methane Nanomaterials nanoparticles Nanospheres nickel Porous materials Reforming Shells silica Silicon dioxide Thermogravimetric analysis |
title | Sandwich‐Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low‐Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sandwich%E2%80%90Like%20Silica@Ni@Silica%20Multicore%E2%80%93Shell%20Catalyst%20for%20the%20Low%E2%80%90Temperature%20Dry%20Reforming%20of%20Methane:%20Confinement%20Effect%20Against%20Carbon%20Formation&rft.jtitle=ChemCatChem&rft.au=Bian,%20Zhoufeng&rft.date=2018-01-09&rft.volume=10&rft.issue=1&rft.spage=320&rft.epage=328&rft.pages=320-328&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201701024&rft_dat=%3Cproquest_cross%3E1985887806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985887806&rft_id=info:pmid/&rfr_iscdi=true |