Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)
This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the maj...
Gespeichert in:
Veröffentlicht in: | International journal of earth sciences : Geologische Rundschau 2018, Vol.107 (1), p.89-101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | International journal of earth sciences : Geologische Rundschau |
container_volume | 107 |
creator | Förster, Andrea Förster, Hans-Jürgen Krentz, Ottomar |
description | This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity
k
, radiogenic heat production
H
). The uncertainties of modelled temperature caused by observed variations of
k
and
H
and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3–4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production (~6 µW m
−3
) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use. |
doi_str_mv | 10.1007/s00531-016-1429-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1985053300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985053300</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-93f24c46d13c8137d4dabde2829ae466b77ad04c109d63d6f6c55f5b572b3bf43</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAi4NVkyZN16OMOYWBh-nFS0iTdOvskppksN794aZUxIunJF_e5_3gAeAaozuMUH7vEcoIThBmCaZpkbATMMKU5AlJWXr6e8_oObjwfodQP8Aj8LU4to11ItTWQFvBsNVQm60wUiu40Ta-3V400Hc-6D28XSzXE9jaoE2o4zgS0sUv0TS10dBZ-eFhZR1UtQ-ulgFudew2m0g2pYbv1ugpXIujNd0ULvtu000uwVklGq-vfs4xeHtcvM6fktXL8nn-sEoEIUVIClKlVFKmMJEzTHJFlSiVTmdpITRlrMxzoRCVGBWKEcUqJrOsysosT0tSVpSMwc3Q2zr7edA-8J09OBNXclzMsmiQIBRTeEhJZ713uuKtq_fCdRwj3svmg2weZfNeNmeRSQfGx6zZaPen-V_oGwW1gqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985053300</pqid></control><display><type>article</type><title>Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)</title><source>SpringerNature Journals</source><creator>Förster, Andrea ; Förster, Hans-Jürgen ; Krentz, Ottomar</creator><creatorcontrib>Förster, Andrea ; Förster, Hans-Jürgen ; Krentz, Ottomar</creatorcontrib><description>This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity
k
, radiogenic heat production
H
). The uncertainties of modelled temperature caused by observed variations of
k
and
H
and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3–4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production (~6 µW m
−3
) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-016-1429-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boreholes ; Computational fluid dynamics ; Crystalline rocks ; Decay ; Deployment ; Diorite ; District heating ; Earth and Environmental Science ; Earth Sciences ; Enhanced geothermal systems ; Exploration ; Flow paths ; Fluid flow ; Fluids ; Geochemistry ; Geology ; Geophysics/Geodesy ; Geothermal exploration ; Geothermal resources ; Heat ; Heat flow ; Heat transmission ; Heat treatment ; Heating ; Heating systems ; Isotopes ; Low concentrations ; Metamorphic rocks ; Mineral Resources ; Original Paper ; Quartzite ; Radioactive decay ; Rock ; Sedimentology ; Slates ; Structural Geology ; Syenite ; Temperature ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Thorium ; Uranium ; Working fluids</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2018, Vol.107 (1), p.89-101</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>International Journal of Earth Sciences is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-93f24c46d13c8137d4dabde2829ae466b77ad04c109d63d6f6c55f5b572b3bf43</citedby><cites>FETCH-LOGICAL-a339t-93f24c46d13c8137d4dabde2829ae466b77ad04c109d63d6f6c55f5b572b3bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-016-1429-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-016-1429-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Förster, Andrea</creatorcontrib><creatorcontrib>Förster, Hans-Jürgen</creatorcontrib><creatorcontrib>Krentz, Ottomar</creatorcontrib><title>Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><description>This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity
k
, radiogenic heat production
H
). The uncertainties of modelled temperature caused by observed variations of
k
and
H
and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3–4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production (~6 µW m
−3
) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.</description><subject>Boreholes</subject><subject>Computational fluid dynamics</subject><subject>Crystalline rocks</subject><subject>Decay</subject><subject>Deployment</subject><subject>Diorite</subject><subject>District heating</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Enhanced geothermal systems</subject><subject>Exploration</subject><subject>Flow paths</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geothermal exploration</subject><subject>Geothermal resources</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transmission</subject><subject>Heat treatment</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Isotopes</subject><subject>Low concentrations</subject><subject>Metamorphic rocks</subject><subject>Mineral Resources</subject><subject>Original Paper</subject><subject>Quartzite</subject><subject>Radioactive decay</subject><subject>Rock</subject><subject>Sedimentology</subject><subject>Slates</subject><subject>Structural Geology</subject><subject>Syenite</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thorium</subject><subject>Uranium</subject><subject>Working fluids</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAi4NVkyZN16OMOYWBh-nFS0iTdOvskppksN794aZUxIunJF_e5_3gAeAaozuMUH7vEcoIThBmCaZpkbATMMKU5AlJWXr6e8_oObjwfodQP8Aj8LU4to11ItTWQFvBsNVQm60wUiu40Ta-3V400Hc-6D28XSzXE9jaoE2o4zgS0sUv0TS10dBZ-eFhZR1UtQ-ulgFudew2m0g2pYbv1ugpXIujNd0ULvtu000uwVklGq-vfs4xeHtcvM6fktXL8nn-sEoEIUVIClKlVFKmMJEzTHJFlSiVTmdpITRlrMxzoRCVGBWKEcUqJrOsysosT0tSVpSMwc3Q2zr7edA-8J09OBNXclzMsmiQIBRTeEhJZ713uuKtq_fCdRwj3svmg2weZfNeNmeRSQfGx6zZaPen-V_oGwW1gqs</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Förster, Andrea</creator><creator>Förster, Hans-Jürgen</creator><creator>Krentz, Ottomar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)</title><author>Förster, Andrea ; Förster, Hans-Jürgen ; Krentz, Ottomar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-93f24c46d13c8137d4dabde2829ae466b77ad04c109d63d6f6c55f5b572b3bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boreholes</topic><topic>Computational fluid dynamics</topic><topic>Crystalline rocks</topic><topic>Decay</topic><topic>Deployment</topic><topic>Diorite</topic><topic>District heating</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Enhanced geothermal systems</topic><topic>Exploration</topic><topic>Flow paths</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geothermal exploration</topic><topic>Geothermal resources</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transmission</topic><topic>Heat treatment</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Isotopes</topic><topic>Low concentrations</topic><topic>Metamorphic rocks</topic><topic>Mineral Resources</topic><topic>Original Paper</topic><topic>Quartzite</topic><topic>Radioactive decay</topic><topic>Rock</topic><topic>Sedimentology</topic><topic>Slates</topic><topic>Structural Geology</topic><topic>Syenite</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thorium</topic><topic>Uranium</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förster, Andrea</creatorcontrib><creatorcontrib>Förster, Hans-Jürgen</creatorcontrib><creatorcontrib>Krentz, Ottomar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förster, Andrea</au><au>Förster, Hans-Jürgen</au><au>Krentz, Ottomar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><date>2018</date><risdate>2018</risdate><volume>107</volume><issue>1</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity
k
, radiogenic heat production
H
). The uncertainties of modelled temperature caused by observed variations of
k
and
H
and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3–4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production (~6 µW m
−3
) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-016-1429-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1437-3254 |
ispartof | International journal of earth sciences : Geologische Rundschau, 2018, Vol.107 (1), p.89-101 |
issn | 1437-3254 1437-3262 |
language | eng |
recordid | cdi_proquest_journals_1985053300 |
source | SpringerNature Journals |
subjects | Boreholes Computational fluid dynamics Crystalline rocks Decay Deployment Diorite District heating Earth and Environmental Science Earth Sciences Enhanced geothermal systems Exploration Flow paths Fluid flow Fluids Geochemistry Geology Geophysics/Geodesy Geothermal exploration Geothermal resources Heat Heat flow Heat transmission Heat treatment Heating Heating systems Isotopes Low concentrations Metamorphic rocks Mineral Resources Original Paper Quartzite Radioactive decay Rock Sedimentology Slates Structural Geology Syenite Temperature Thermal conductivity Thermal properties Thermodynamic properties Thorium Uranium Working fluids |
title | Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T03%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20the%20enhanced%20geothermal%20system%20(EGS)%20potential%20of%20crystalline%20rocks%20for%20district%20heating%20(Elbe%20Zone,%20Saxony,%20Germany)&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=F%C3%B6rster,%20Andrea&rft.date=2018&rft.volume=107&rft.issue=1&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-016-1429-6&rft_dat=%3Cproquest_cross%3E1985053300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985053300&rft_id=info:pmid/&rfr_iscdi=true |