EEG-Based Biometric Authentication Using Gamma Band Power During Rest State
Electroencephalography (EEG), one of the most effective noninvasive methods for recording brain’s electrical activity, has widely been employed in the diagnosis of brain diseases for a few decades. Recently, the promising biometric potential of EEG, for developing person identification and authentic...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2018-01, Vol.37 (1), p.277-289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 1 |
container_start_page | 277 |
container_title | Circuits, systems, and signal processing |
container_volume | 37 |
creator | Thomas, Kavitha P Vinod, A. P. |
description | Electroencephalography (EEG), one of the most effective noninvasive methods for recording brain’s electrical activity, has widely been employed in the diagnosis of brain diseases for a few decades. Recently, the promising biometric potential of EEG, for developing person identification and authentication systems, has also been explored. This paper presents the superior performance of power spectral density (PSD) features of gamma band (30–50 Hz) in biometric authentication, compared to delta, theta, alpha and beta band of EEG signals during rest state. The proposed authentication technique based on simple cross-correlation values of PSD features extracted from 19 EEG channels during eyes closed and eyes open rest state conditions among 109 subjects offers an equal error rate (EER) of 0.0196 which is better than the state-of-the-art method employing eigenvector centrality features extracted from gamma band of 64 EEG channels of the same dataset. The obtained results are promising, but further investigation is essential for exploring the subject-specific neural dynamics and stability of gamma waves and for optimizing the results. |
doi_str_mv | 10.1007/s00034-017-0551-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1985051960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985051960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-cceb665f39a52ab83aacf3716a9ac4f631721947d389217bf39931f8bab1201c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeA52he0jTJcZtzigNFHXgLaZZqh21nkiL-97bUgxdPDx7fH-99EDoHegmUyqtIKeUZoSAJFQJIdoAmIDgQoaQ6RBPKpCJUwesxOolxRynoTLMJul8uV2Ruo9_iedXWPoXK4VmX3n2TKmdT1TZ4E6vmDa9sXVs8t80WP7ZfPuDrLgz7Jx8Tfk42-VN0VNqP6M9-5xRtbpYvi1uyfljdLWZr4rhiiTjnizwXJddWMFsobq0ruYTcauuyMucgWX-d3HKlGciiF2oOpSpsAYyC41N0MebuQ_vZ9fVm13ah6SsNaCWoAJ3TXgWjyoU2xuBLsw9VbcO3AWoGZmZkZnpmZmBmst7DRk_cD7_58Cf5X9MP-tFtIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985051960</pqid></control><display><type>article</type><title>EEG-Based Biometric Authentication Using Gamma Band Power During Rest State</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thomas, Kavitha P ; Vinod, A. P.</creator><creatorcontrib>Thomas, Kavitha P ; Vinod, A. P.</creatorcontrib><description>Electroencephalography (EEG), one of the most effective noninvasive methods for recording brain’s electrical activity, has widely been employed in the diagnosis of brain diseases for a few decades. Recently, the promising biometric potential of EEG, for developing person identification and authentication systems, has also been explored. This paper presents the superior performance of power spectral density (PSD) features of gamma band (30–50 Hz) in biometric authentication, compared to delta, theta, alpha and beta band of EEG signals during rest state. The proposed authentication technique based on simple cross-correlation values of PSD features extracted from 19 EEG channels during eyes closed and eyes open rest state conditions among 109 subjects offers an equal error rate (EER) of 0.0196 which is better than the state-of-the-art method employing eigenvector centrality features extracted from gamma band of 64 EEG channels of the same dataset. The obtained results are promising, but further investigation is essential for exploring the subject-specific neural dynamics and stability of gamma waves and for optimizing the results.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-017-0551-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biometrics ; Brain ; Channels ; Circuits and Systems ; Dynamic stability ; Electrical Engineering ; Electroencephalography ; Electronics and Microelectronics ; Engineering ; Feature extraction ; Instrumentation ; Rest ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2018-01, Vol.37 (1), p.277-289</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Circuits, Systems, and Signal Processing is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-cceb665f39a52ab83aacf3716a9ac4f631721947d389217bf39931f8bab1201c3</citedby><cites>FETCH-LOGICAL-c382t-cceb665f39a52ab83aacf3716a9ac4f631721947d389217bf39931f8bab1201c3</cites><orcidid>0000-0002-8134-2242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-017-0551-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-017-0551-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Thomas, Kavitha P</creatorcontrib><creatorcontrib>Vinod, A. P.</creatorcontrib><title>EEG-Based Biometric Authentication Using Gamma Band Power During Rest State</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Electroencephalography (EEG), one of the most effective noninvasive methods for recording brain’s electrical activity, has widely been employed in the diagnosis of brain diseases for a few decades. Recently, the promising biometric potential of EEG, for developing person identification and authentication systems, has also been explored. This paper presents the superior performance of power spectral density (PSD) features of gamma band (30–50 Hz) in biometric authentication, compared to delta, theta, alpha and beta band of EEG signals during rest state. The proposed authentication technique based on simple cross-correlation values of PSD features extracted from 19 EEG channels during eyes closed and eyes open rest state conditions among 109 subjects offers an equal error rate (EER) of 0.0196 which is better than the state-of-the-art method employing eigenvector centrality features extracted from gamma band of 64 EEG channels of the same dataset. The obtained results are promising, but further investigation is essential for exploring the subject-specific neural dynamics and stability of gamma waves and for optimizing the results.</description><subject>Biometrics</subject><subject>Brain</subject><subject>Channels</subject><subject>Circuits and Systems</subject><subject>Dynamic stability</subject><subject>Electrical Engineering</subject><subject>Electroencephalography</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Instrumentation</subject><subject>Rest</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAUx4MoOKd_gLeA52he0jTJcZtzigNFHXgLaZZqh21nkiL-97bUgxdPDx7fH-99EDoHegmUyqtIKeUZoSAJFQJIdoAmIDgQoaQ6RBPKpCJUwesxOolxRynoTLMJul8uV2Ruo9_iedXWPoXK4VmX3n2TKmdT1TZ4E6vmDa9sXVs8t80WP7ZfPuDrLgz7Jx8Tfk42-VN0VNqP6M9-5xRtbpYvi1uyfljdLWZr4rhiiTjnizwXJddWMFsobq0ruYTcauuyMucgWX-d3HKlGciiF2oOpSpsAYyC41N0MebuQ_vZ9fVm13ah6SsNaCWoAJ3TXgWjyoU2xuBLsw9VbcO3AWoGZmZkZnpmZmBmst7DRk_cD7_58Cf5X9MP-tFtIw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Thomas, Kavitha P</creator><creator>Vinod, A. P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-8134-2242</orcidid></search><sort><creationdate>20180101</creationdate><title>EEG-Based Biometric Authentication Using Gamma Band Power During Rest State</title><author>Thomas, Kavitha P ; Vinod, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-cceb665f39a52ab83aacf3716a9ac4f631721947d389217bf39931f8bab1201c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biometrics</topic><topic>Brain</topic><topic>Channels</topic><topic>Circuits and Systems</topic><topic>Dynamic stability</topic><topic>Electrical Engineering</topic><topic>Electroencephalography</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Instrumentation</topic><topic>Rest</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Kavitha P</creatorcontrib><creatorcontrib>Vinod, A. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Kavitha P</au><au>Vinod, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG-Based Biometric Authentication Using Gamma Band Power During Rest State</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>37</volume><issue>1</issue><spage>277</spage><epage>289</epage><pages>277-289</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Electroencephalography (EEG), one of the most effective noninvasive methods for recording brain’s electrical activity, has widely been employed in the diagnosis of brain diseases for a few decades. Recently, the promising biometric potential of EEG, for developing person identification and authentication systems, has also been explored. This paper presents the superior performance of power spectral density (PSD) features of gamma band (30–50 Hz) in biometric authentication, compared to delta, theta, alpha and beta band of EEG signals during rest state. The proposed authentication technique based on simple cross-correlation values of PSD features extracted from 19 EEG channels during eyes closed and eyes open rest state conditions among 109 subjects offers an equal error rate (EER) of 0.0196 which is better than the state-of-the-art method employing eigenvector centrality features extracted from gamma band of 64 EEG channels of the same dataset. The obtained results are promising, but further investigation is essential for exploring the subject-specific neural dynamics and stability of gamma waves and for optimizing the results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-017-0551-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8134-2242</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2018-01, Vol.37 (1), p.277-289 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_1985051960 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biometrics Brain Channels Circuits and Systems Dynamic stability Electrical Engineering Electroencephalography Electronics and Microelectronics Engineering Feature extraction Instrumentation Rest Signal,Image and Speech Processing |
title | EEG-Based Biometric Authentication Using Gamma Band Power During Rest State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG-Based%20Biometric%20Authentication%20Using%20Gamma%20Band%20Power%20During%20Rest%20State&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Thomas,%20Kavitha%20P&rft.date=2018-01-01&rft.volume=37&rft.issue=1&rft.spage=277&rft.epage=289&rft.pages=277-289&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-017-0551-4&rft_dat=%3Cproquest_cross%3E1985051960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985051960&rft_id=info:pmid/&rfr_iscdi=true |