Analysis of current conduction mechanism in CZTSSe/n-Si structure

In this study, Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-04, Vol.29 (7), p.5264-5274
Hauptverfasser: Terlemezoglu, M., Bayraklı, Ö., Güllü, H. H., Çolakoğlu, T., Yildiz, D. E., Parlak, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5274
container_issue 7
container_start_page 5264
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Terlemezoglu, M.
Bayraklı, Ö.
Güllü, H. H.
Çolakoğlu, T.
Yildiz, D. E.
Parlak, M.
description In this study, Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height ( Φ ¯ B 0 ) and standard deviation ( σ 0 ) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm −2  K −2 via modified Richardson plot and the density of interface states (D it ) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (C HF − C LF ) and Hill–Coleman methods.
doi_str_mv 10.1007/s10854-017-8490-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1985024034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985024034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9f0f77e4a17ea65471156411c4246107ace9083ca05d9ef7bdaca746cfbcf74a3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQRy0EEqXwAdgsMZveJec4GauKf1IlhhQJsViua0Oq1il2MvTbkyoMLEy3vPfT6TF2i3CPAGqWEEpJAlCJkioQeMYmKFUuqMzez9kEKqkEySy7ZFcpbQGgoLycsPk8mN0xNYm3nts-Rhc6btuw6W3XtIHvnf0yoUl73gS--FjVtZsFUTc8dXFA-uiu2YU3u-Rufu-UvT0-rBbPYvn69LKYL4XNsehE5cEr5cigcqaQpBBlQYiWMioQlLGugjK3BuSmcl6tN8YaRYX1a-sVmXzK7sbdQ2y_e5c6vW37OHyfNFalhIwgp4HCkbKxTSk6rw-x2Zt41Aj6VEqPpfRQSp9KaRycbHTSwIZPF_8s_yv9AEw7awQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985024034</pqid></control><display><type>article</type><title>Analysis of current conduction mechanism in CZTSSe/n-Si structure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Terlemezoglu, M. ; Bayraklı, Ö. ; Güllü, H. H. ; Çolakoğlu, T. ; Yildiz, D. E. ; Parlak, M.</creator><creatorcontrib>Terlemezoglu, M. ; Bayraklı, Ö. ; Güllü, H. H. ; Çolakoğlu, T. ; Yildiz, D. E. ; Parlak, M.</creatorcontrib><description>In this study, Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height ( Φ ¯ B 0 ) and standard deviation ( σ 0 ) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm −2  K −2 via modified Richardson plot and the density of interface states (D it ) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (C HF − C LF ) and Hill–Coleman methods.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-8490-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barriers ; Bias ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric potential ; Electrical properties ; Emission analysis ; Gaussian distribution ; Inhomogeneity ; Materials Science ; Normal distribution ; Optical and Electronic Materials ; Optical properties ; Resistance ; Silicon substrates ; Sintering (powder metallurgy) ; Soda-lime glass ; Thermionic emission ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2018-04, Vol.29 (7), p.5264-5274</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9f0f77e4a17ea65471156411c4246107ace9083ca05d9ef7bdaca746cfbcf74a3</citedby><cites>FETCH-LOGICAL-c316t-9f0f77e4a17ea65471156411c4246107ace9083ca05d9ef7bdaca746cfbcf74a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-8490-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-8490-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Terlemezoglu, M.</creatorcontrib><creatorcontrib>Bayraklı, Ö.</creatorcontrib><creatorcontrib>Güllü, H. H.</creatorcontrib><creatorcontrib>Çolakoğlu, T.</creatorcontrib><creatorcontrib>Yildiz, D. E.</creatorcontrib><creatorcontrib>Parlak, M.</creatorcontrib><title>Analysis of current conduction mechanism in CZTSSe/n-Si structure</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this study, Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height ( Φ ¯ B 0 ) and standard deviation ( σ 0 ) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm −2  K −2 via modified Richardson plot and the density of interface states (D it ) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (C HF − C LF ) and Hill–Coleman methods.</description><subject>Barriers</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>Emission analysis</subject><subject>Gaussian distribution</subject><subject>Inhomogeneity</subject><subject>Materials Science</subject><subject>Normal distribution</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Resistance</subject><subject>Silicon substrates</subject><subject>Sintering (powder metallurgy)</subject><subject>Soda-lime glass</subject><subject>Thermionic emission</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD9PwzAQRy0EEqXwAdgsMZveJec4GauKf1IlhhQJsViua0Oq1il2MvTbkyoMLEy3vPfT6TF2i3CPAGqWEEpJAlCJkioQeMYmKFUuqMzez9kEKqkEySy7ZFcpbQGgoLycsPk8mN0xNYm3nts-Rhc6btuw6W3XtIHvnf0yoUl73gS--FjVtZsFUTc8dXFA-uiu2YU3u-Rufu-UvT0-rBbPYvn69LKYL4XNsehE5cEr5cigcqaQpBBlQYiWMioQlLGugjK3BuSmcl6tN8YaRYX1a-sVmXzK7sbdQ2y_e5c6vW37OHyfNFalhIwgp4HCkbKxTSk6rw-x2Zt41Aj6VEqPpfRQSp9KaRycbHTSwIZPF_8s_yv9AEw7awQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Terlemezoglu, M.</creator><creator>Bayraklı, Ö.</creator><creator>Güllü, H. H.</creator><creator>Çolakoğlu, T.</creator><creator>Yildiz, D. E.</creator><creator>Parlak, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180401</creationdate><title>Analysis of current conduction mechanism in CZTSSe/n-Si structure</title><author>Terlemezoglu, M. ; Bayraklı, Ö. ; Güllü, H. H. ; Çolakoğlu, T. ; Yildiz, D. E. ; Parlak, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9f0f77e4a17ea65471156411c4246107ace9083ca05d9ef7bdaca746cfbcf74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Barriers</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>Emission analysis</topic><topic>Gaussian distribution</topic><topic>Inhomogeneity</topic><topic>Materials Science</topic><topic>Normal distribution</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Resistance</topic><topic>Silicon substrates</topic><topic>Sintering (powder metallurgy)</topic><topic>Soda-lime glass</topic><topic>Thermionic emission</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terlemezoglu, M.</creatorcontrib><creatorcontrib>Bayraklı, Ö.</creatorcontrib><creatorcontrib>Güllü, H. H.</creatorcontrib><creatorcontrib>Çolakoğlu, T.</creatorcontrib><creatorcontrib>Yildiz, D. E.</creatorcontrib><creatorcontrib>Parlak, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terlemezoglu, M.</au><au>Bayraklı, Ö.</au><au>Güllü, H. H.</au><au>Çolakoğlu, T.</au><au>Yildiz, D. E.</au><au>Parlak, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of current conduction mechanism in CZTSSe/n-Si structure</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>29</volume><issue>7</issue><spage>5264</spage><epage>5274</epage><pages>5264-5274</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this study, Cu 2 ZnSn(S,Se) 4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height ( Φ ¯ B 0 ) and standard deviation ( σ 0 ) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm −2  K −2 via modified Richardson plot and the density of interface states (D it ) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (C HF − C LF ) and Hill–Coleman methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-8490-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-04, Vol.29 (7), p.5264-5274
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1985024034
source SpringerLink Journals - AutoHoldings
subjects Barriers
Bias
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electric potential
Electrical properties
Emission analysis
Gaussian distribution
Inhomogeneity
Materials Science
Normal distribution
Optical and Electronic Materials
Optical properties
Resistance
Silicon substrates
Sintering (powder metallurgy)
Soda-lime glass
Thermionic emission
Thin films
title Analysis of current conduction mechanism in CZTSSe/n-Si structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20current%20conduction%20mechanism%20in%20CZTSSe/n-Si%20structure&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Terlemezoglu,%20M.&rft.date=2018-04-01&rft.volume=29&rft.issue=7&rft.spage=5264&rft.epage=5274&rft.pages=5264-5274&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-8490-1&rft_dat=%3Cproquest_cross%3E1985024034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985024034&rft_id=info:pmid/&rfr_iscdi=true