Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?

Heat flow high −80 ± 10 mW/m 2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m 2 ) of the same basin with the same old 2E09 year’s Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of earth sciences : Geologische Rundschau 2018, Vol.107 (1), p.5-18
1. Verfasser: Majorowicz, Jacek A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 5
container_title International journal of earth sciences : Geologische Rundschau
container_volume 107
creator Majorowicz, Jacek A.
description Heat flow high −80 ± 10 mW/m 2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m 2 ) of the same basin with the same old 2E09 year’s Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton’ crust and low 15 ± 5 mW/m 2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.
doi_str_mv 10.1007/s00531-016-1352-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1984993979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984993979</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-84881ffe756b1f11a993df1de5610889737d1230c92cc609cb9ddaba351d05023</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuA62pu07-4ERnUEQbcKC5D2qQ2Q03GpB1nFoLv4Bv6JKZUxY2rHMJ3zr33IHQM5BQIyc88ISmFiEAWAU3jaLODJpDQPKJxFu_-6jTZRwfeLwkZPmCC3uZKdLhu7evn-0cz6JWzsq86bQ12qhWD8I1eYWMDZ3sjz_FrEzjp9Fp53Pz48Vo4LUrd6m6LbY27RuFH5TvlDJ4JI6QWJgQMmUbiUnhtLg7RXi1ar46-3yl6uL66n82jxd3N7exyEQlKWRcVSVFAXas8zUqoAQRjVNYgVZoBKQqW01xCTEnF4qrKCKtKJqUoBU1BkpTEdIpOxtxw3EsfluJL2zsTRnJgRRLiWM4CBSNVOeu9UzVfOf0s3JYD4UPLfGyZh5b50DLfBE88enxgzZNyf5L_NX0BvaOCjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984993979</pqid></control><display><type>article</type><title>Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Majorowicz, Jacek A.</creator><creatorcontrib>Majorowicz, Jacek A.</creatorcontrib><description>Heat flow high −80 ± 10 mW/m 2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m 2 ) of the same basin with the same old 2E09 year’s Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton’ crust and low 15 ± 5 mW/m 2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-016-1352-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basins ; Cratons ; Earth and Environmental Science ; Earth Sciences ; Flow system ; Fluid dynamics ; Fluid flow ; Foothills ; Geochemistry ; Geology ; Geophysics/Geodesy ; Heat ; Heat flow ; Heat transfer ; Heat transmission ; Lithosphere ; Mineral Resources ; Mountains ; Piezometric head ; Precambrian ; Review Article ; Sedimentology ; Structural Geology</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2018, Vol.107 (1), p.5-18</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>International Journal of Earth Sciences is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-84881ffe756b1f11a993df1de5610889737d1230c92cc609cb9ddaba351d05023</citedby><cites>FETCH-LOGICAL-a339t-84881ffe756b1f11a993df1de5610889737d1230c92cc609cb9ddaba351d05023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-016-1352-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-016-1352-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Majorowicz, Jacek A.</creatorcontrib><title>Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><description>Heat flow high −80 ± 10 mW/m 2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m 2 ) of the same basin with the same old 2E09 year’s Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton’ crust and low 15 ± 5 mW/m 2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.</description><subject>Basins</subject><subject>Cratons</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flow system</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Foothills</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heat</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Lithosphere</subject><subject>Mineral Resources</subject><subject>Mountains</subject><subject>Piezometric head</subject><subject>Precambrian</subject><subject>Review Article</subject><subject>Sedimentology</subject><subject>Structural Geology</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuA62pu07-4ERnUEQbcKC5D2qQ2Q03GpB1nFoLv4Bv6JKZUxY2rHMJ3zr33IHQM5BQIyc88ISmFiEAWAU3jaLODJpDQPKJxFu_-6jTZRwfeLwkZPmCC3uZKdLhu7evn-0cz6JWzsq86bQ12qhWD8I1eYWMDZ3sjz_FrEzjp9Fp53Pz48Vo4LUrd6m6LbY27RuFH5TvlDJ4JI6QWJgQMmUbiUnhtLg7RXi1ar46-3yl6uL66n82jxd3N7exyEQlKWRcVSVFAXas8zUqoAQRjVNYgVZoBKQqW01xCTEnF4qrKCKtKJqUoBU1BkpTEdIpOxtxw3EsfluJL2zsTRnJgRRLiWM4CBSNVOeu9UzVfOf0s3JYD4UPLfGyZh5b50DLfBE88enxgzZNyf5L_NX0BvaOCjQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Majorowicz, Jacek A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?</title><author>Majorowicz, Jacek A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-84881ffe756b1f11a993df1de5610889737d1230c92cc609cb9ddaba351d05023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basins</topic><topic>Cratons</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flow system</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Foothills</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heat</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Lithosphere</topic><topic>Mineral Resources</topic><topic>Mountains</topic><topic>Piezometric head</topic><topic>Precambrian</topic><topic>Review Article</topic><topic>Sedimentology</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majorowicz, Jacek A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majorowicz, Jacek A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><date>2018</date><risdate>2018</risdate><volume>107</volume><issue>1</issue><spage>5</spage><epage>18</epage><pages>5-18</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Heat flow high −80 ± 10 mW/m 2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m 2 ) of the same basin with the same old 2E09 year’s Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton’ crust and low 15 ± 5 mW/m 2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-016-1352-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1437-3254
ispartof International journal of earth sciences : Geologische Rundschau, 2018, Vol.107 (1), p.5-18
issn 1437-3254
1437-3262
language eng
recordid cdi_proquest_journals_1984993979
source SpringerLink Journals - AutoHoldings
subjects Basins
Cratons
Earth and Environmental Science
Earth Sciences
Flow system
Fluid dynamics
Fluid flow
Foothills
Geochemistry
Geology
Geophysics/Geodesy
Heat
Heat flow
Heat transfer
Heat transmission
Lithosphere
Mineral Resources
Mountains
Piezometric head
Precambrian
Review Article
Sedimentology
Structural Geology
title Heat flow–heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20flow%E2%80%93heat%20production%20relationship%20not%20found:%20what%20drives%20heat%20flow%20variability%20of%20the%20Western%20Canadian%20foreland%20basin?&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Majorowicz,%20Jacek%20A.&rft.date=2018&rft.volume=107&rft.issue=1&rft.spage=5&rft.epage=18&rft.pages=5-18&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-016-1352-x&rft_dat=%3Cproquest_cross%3E1984993979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984993979&rft_id=info:pmid/&rfr_iscdi=true